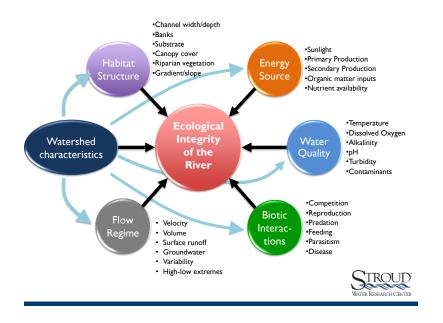


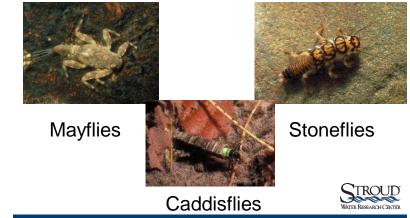
An Introduction to Biological Stream Condition and Restoration, with special reference to bugs and fish in Delaware River

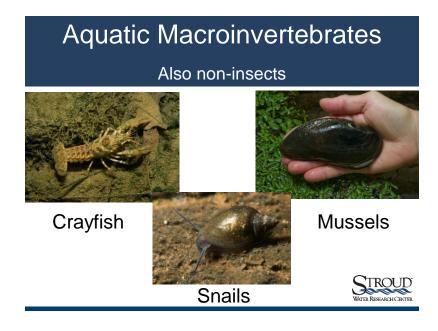
> John K. Jackson, Ph.D. Senior Research Scientist

Aquatic Entomologist & Stream Ecologist


Stream Ecologist & Aquatic Entomologist

My Agenda Today

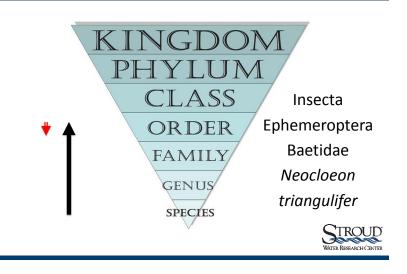

- Introduce some natural history for stream macroinvertebrates and fish
- Describe stream degradation based on current conditions in the tributaries of the Delaware River Basin
- Summarize evidence of successful or unsuccessful restoration



Primarily aquatic insects

Macroinvertebrate Biodiversity

- · Diversity of life in streams -
 - Breitenbach, Schlitz Germany.- Max Plank Institute (Allan 11.1, Zwick 1992)
 - 1044 species of animals over many years of collecting, 642 are insects
 - High numbers of insects not unusual for streams
 - Upper Three Runs in SC (about **350** species of insects)
 - White Clay Creek PA (300 sp.)
 - Rio Tempisquito partial collections in Costa Rica (>300 sp.)
- In contrast, a high alpine stream in the Rockies or Alps might only have 50 species


White Clay Creek at Stroud Center Over 50 years			
	Insect Order	Species	
	Ephemeroptera	52	
	Odonata	14	
	Plecoptera	19	
	Hemiptera	9	
	Trichoptera	55	
	Megaloptera	5	
	Lepidoptera	1	
	Diptera	118	
	Total	298	ARCH CENTER

Genus/Species

White Clay Creek, Chester Co, PA

Volunteers	≈10	
Amateurs (interns)	26	
Expert – genus	67	
Expert – species	88	
Genetics	150	~
		WATER RESEARCH CENTER

Taxonomic Hierarchy

Natural factors affecting stream macroinvertebrates

- Temperature hot or cold north vs south, high vs low elevation, summer versus winter
- Current fast or slow riffle vs pool
- Substrate boulder, cobble, sand, silt
- Food leaves, algae, fine particles
- Water chemistry
 - Dissolved oxygen
 - Alkalinity limestone vs blackwater streams

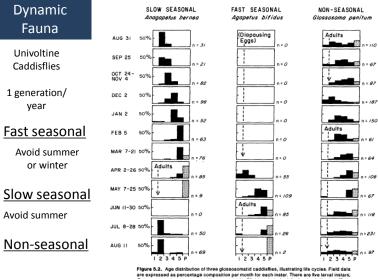
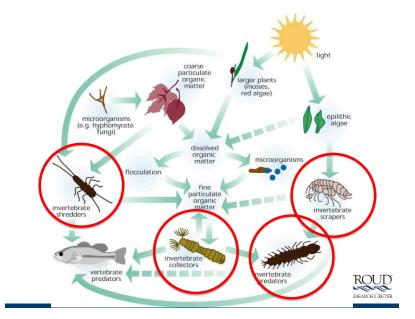
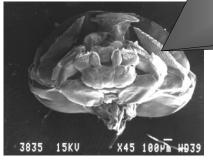
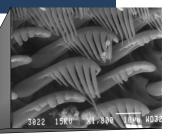



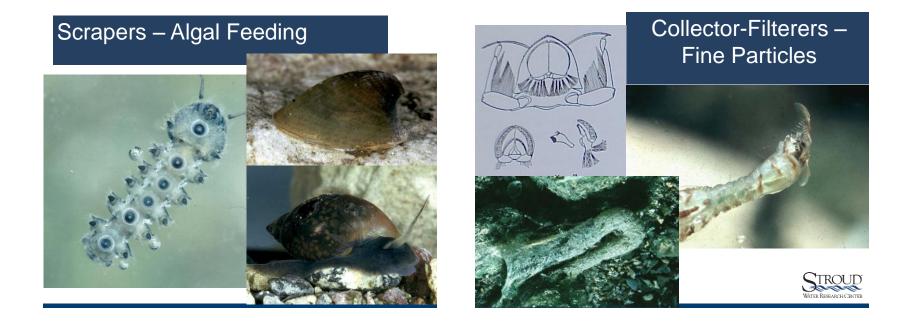
Figure 5.2. Age distribution of three glossosomatic caddisfiles, illustrating life cycles. Field data are expressed as percentage composition per month for each instar. There are five larval instars; P = prepups + pups; n = number per sample. Flight period of adults is also indicated. (Data from Anderson and Bourne (1974).

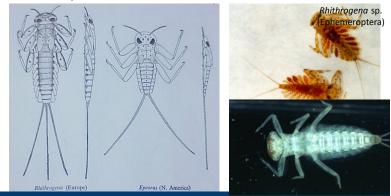
н




Shredders – Feed on leaves

Scraper – Algal Feeding



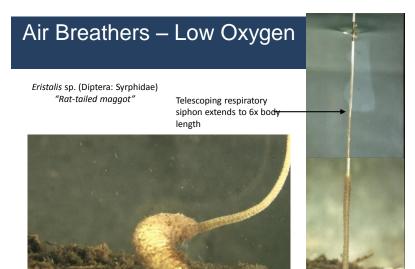

Rhithrogenia pellucida maxillary palps

Clingers – fast water, rocky substrate

Large curved claws, dorsoventrally flattened, rheophilic, can swim if forced

Burrowers – slow water, fine sediments

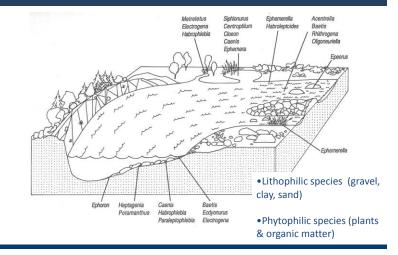
Prefer soft sediment, equipped with digging tusks, large bushy gills for O₂ poor conditions, lentic


Ephemera danica

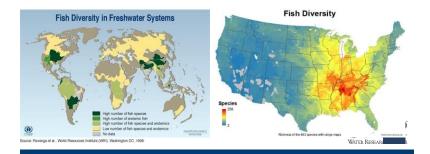
Air Breathers – Low Oxygen

Ranatra linearis (Hemiptera)

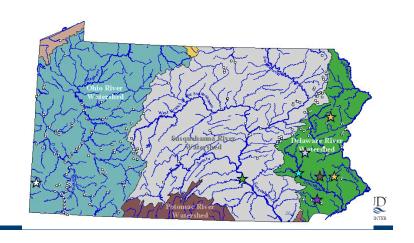
Gill Breathers – Higher Oxygen


Rhithrogena sp. (Ephemeroptera)

Potamanthus sp. (Ephemeroptera)



Reach-Scale Habitat for Ephemeroptera (as an example)



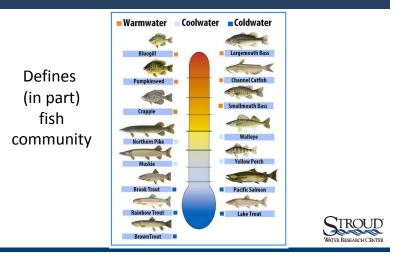
Fish Worldwide

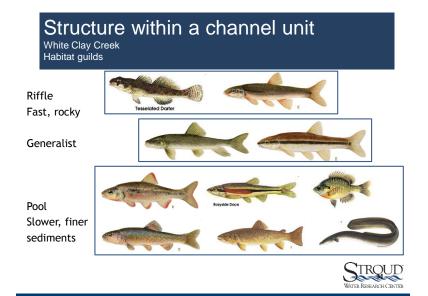
Freshwaters have disproportionately high diversity, given that there is much less freshwater habitat compared to marine habitat

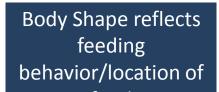
Major River Basins of Pennsylvania

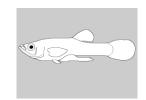
Fish				
19 Native species in White Clay Creek				
American eel	Spotfin shiner	Creek chub		
Sea lamprey	Spottail shiner	Fallfish		
American brook lamprey	Swallowtail shiner	Rock bass		
White sucker	Tessellated darter			
Creek chubsucker	Cutlips minnow			
Rosyside dace	Banded killifish	Brown trout		
Blacknose dace	Redbreast sunfish	Rainbow trout		
Longnose dace	Green sunfish	Smallmouth bass		
Common shiner	Pumpkinseed	Largemouth bass	Ľ	
Satinfin shiner	Margined madtom	Bluegill	► JE	

Fish habitat

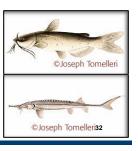

- ➤ Water Velocity
- ➤ Water Quality
- ➤ Temperature
- ➤ Depth
- ➤ Instream-lake Cover
- Stream-lake Size
- Substrate Size
- > Instream-lake Vegetation
- ➢ Riparian Vegetation
- ➢ Floodplain Habitat
- ➢ Migration Corridors




Natural factors affecting stream fish


- Temperature warm or cold water fishery north vs south, high vs low elevation
- Current fast or slow riffle vs pool
- Substrate boulder, cobble, sand, silt
- > Food aquatic vs terrestrial, surface, drift, bottom
- > Water chemistry
 - Dissolved oxygen
 - Alkalinity limestone vs blackwater streams

Temperature


Feed at surface

brown tout © Joseph Tomellen

Feed in front

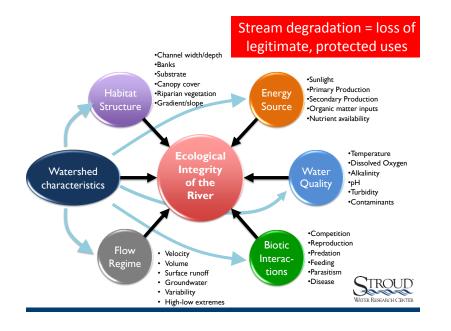
Feed off bottom

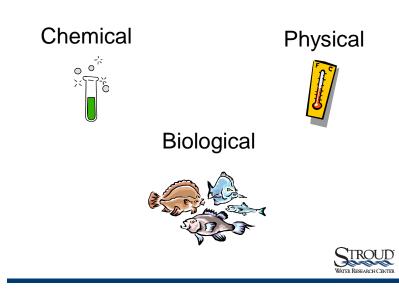
Unfortunately, our water and waterways are rarely in a natural, pristine condition

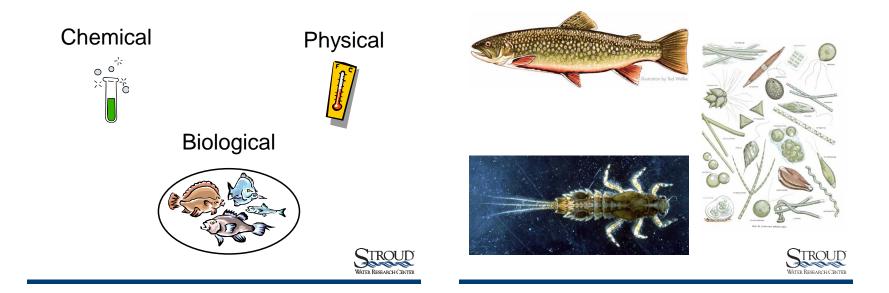
Silent Spring 1962 Earth Day 1970

2019 is the

57th anniversary Silent Spring




49th anniversary Earth Day



In pollution monitoring,

Presence tells you something

Conspicuous absence also tells you something

Use caution – absence could reflect natural phenomena such as season, location, or microhabitat

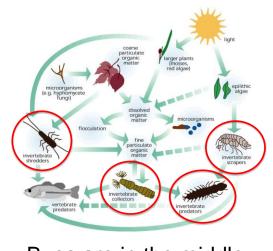
Why Monitor Aquatic Macroinvertebrates?

Aquatic Macroinvertebrate Monitoring

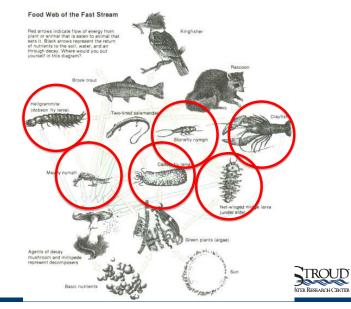
Strong public acceptance Ecologically significant Variable pollution response Extends temporal perspective Standardized monitoring

protocols

Mayfly adult


http://upflyfishing.com/hendrickson-may

Caddisfly larva


http://flyguys.net/fly-patterns/caddis/sharks-caddis-lar

Bugs are in the middle of the food web

Belted Kingfisher

Great Blue Heron

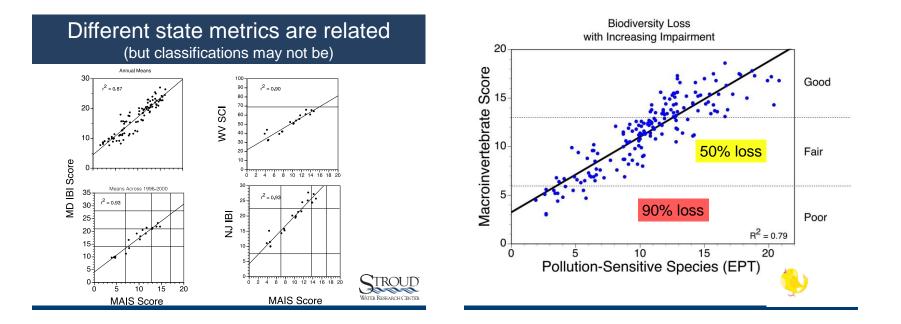
1910

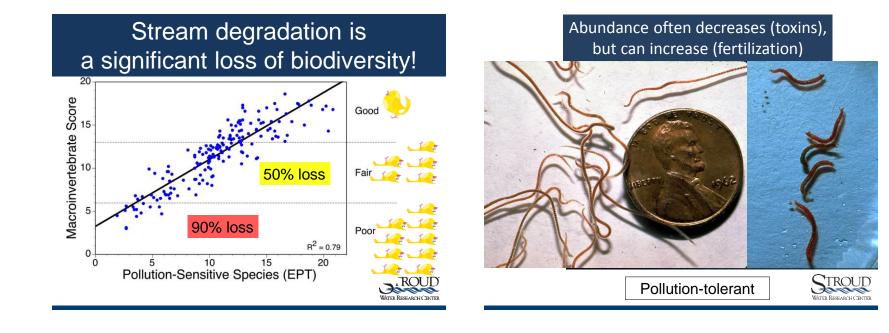
Northern Waterthrush

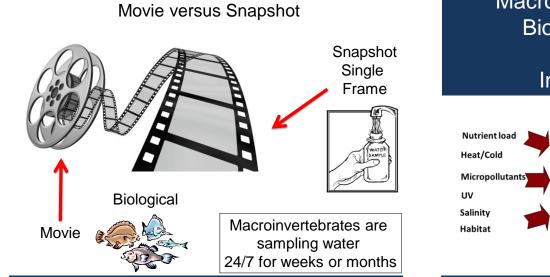
Eastern Pipistrelle

Pollution-sensitive species are our canaries in the coal mine

Ephemeroptera Plecoptera Trichoptera


Pollution-sensitive



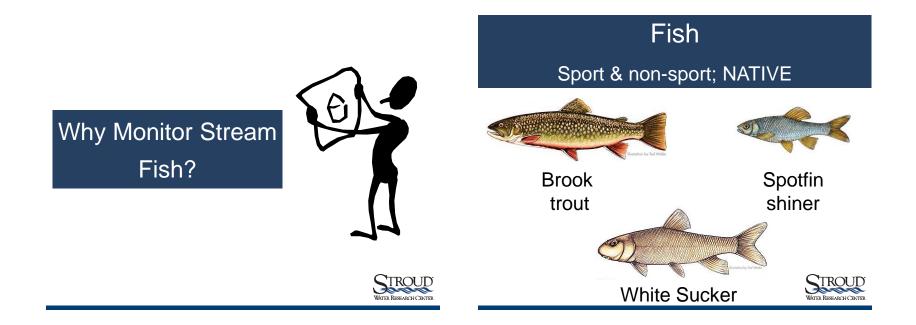

STROUD

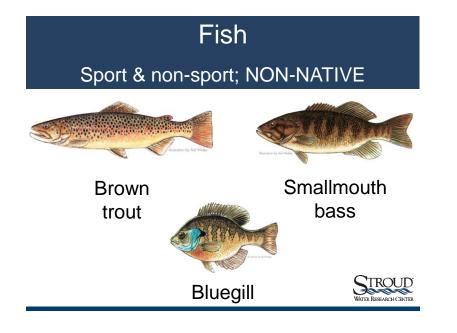
WATER RESEARCH CENTER

Macroinvertebrate	Multimetric indicies from the Mid	l-Atlan	ntic Re	egion
Monitoring protocols well established	Metric MAIS	MD 3	NJ 3	WV 3
PA	EPT Richness 3 Mayfly Richness 3 Diptera Richness	3 3 3 3	3	3
♦ Freestone ♦ Limestone	% EPT 3 % Ephemeroptera 3 % Chironomidae	3 3	3	3
♦ Multihabitat ♦ Semi-wadeable large river	% Dominant 1 taxon % Dominant 2 taxa % Dominant 5 taxa 3 Simpson's Diversity 3		3	3
Maryland – MBSS Family and Genus	Intolerant Richness 3 Hilsenhoff Biotic Index 3 Beck's Biotic Index	3 3	3	3
NJ, DE, NY all different	% Scrapers 3 % Haptobenthos 3			

Macroinvertebrates Provide a Biological Perspective –

Integrating stressors


)ev	elopment (tim	e) 🛌
		\equiv
	FFFFCT	

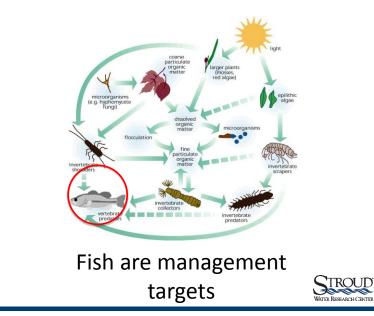

 Quality
 Character

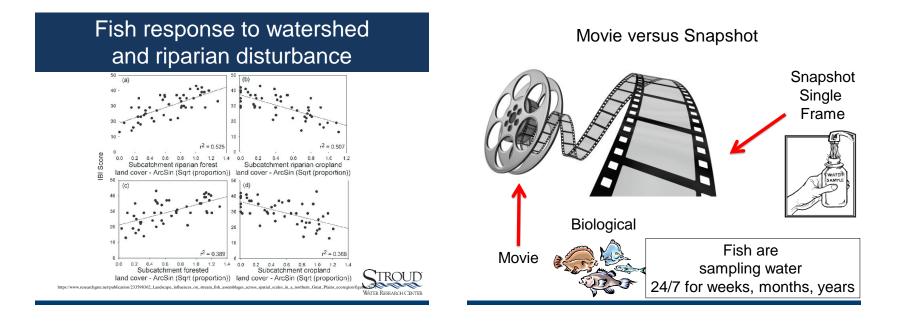
 > irreversible
 > acute/chronic

 > compromising
 > combined effects

Stream Fish Monitoring

Strong public acceptance


Ecologically significant


Variable pollution response

Extends temporal perspective

Standardized monitoring protocols

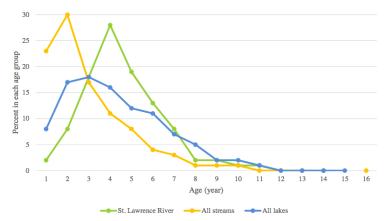


Figure 15. Percent distribution of age 1-16 smallmouth bass from streams, lakes, and the St. Lawrence River, New York, 2004-2013.

https://www.dec.ny.gov/docs/fish_marine_pdf/bbstreamsassess.pdf

WATER RESEARCH CENTER

Fish

Monitoring protocols still developing

New Jersey

◇NJ Headwater IBI – small watershed, northern
 ◇NJ Northern Fish IBI – larger watershed, northern
 ◇NJ Southern Fish IBI – low gradient, (pine barrens)

PA

- \diamond Ohio and Susquehanna done
- \diamond Developing for Delaware River

Maryland – MBSS done, regional

PA Aquatic Life Uses

& Special Protection Uses

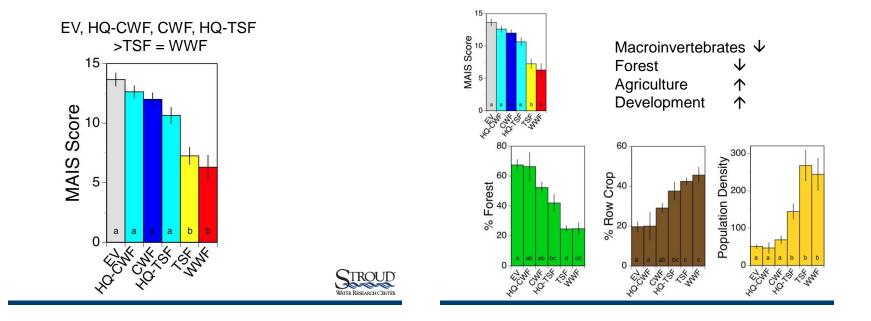
Designated Uses

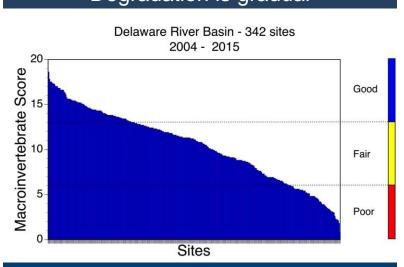
PA Code Chapter 93 https://www.pacode.com/secure/data/025/chapter93/chap93toc.ht ml

> eMapPA http://www.depgis.state.pa.us/emappa/

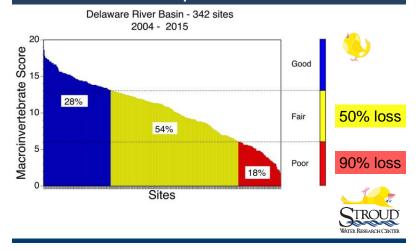
Stream Impairments

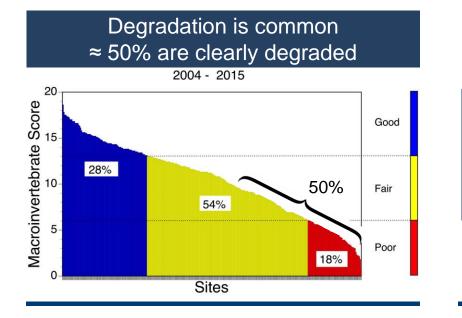
eMapPA PA Integrated Water Quality Report - 2018

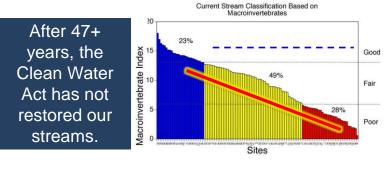



- CWF Cold Water Fishery
- HQ-TSF High Quality Trout Stocking
- TSF Trout Stocking Fishery

WWF Warm Water Fishery

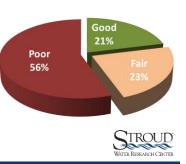

ATER RESEARCH CENTER




Degradation is gradual

Degradation = significant loss of species

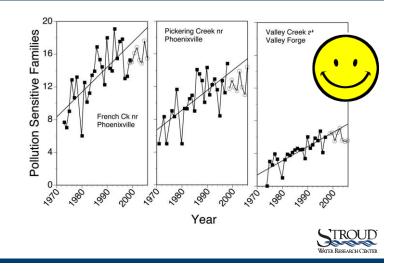
9/25/2019

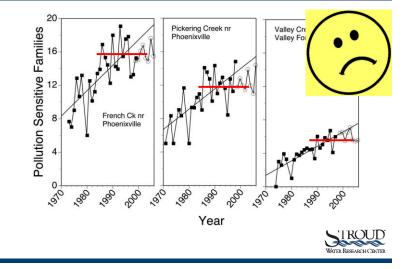


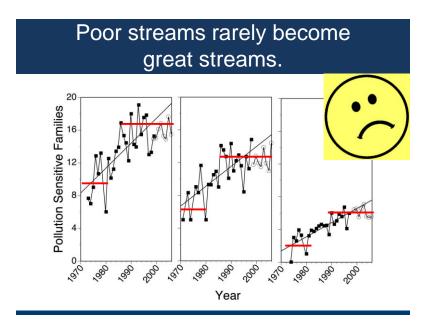
www.epa.gov/aquaticsurveys

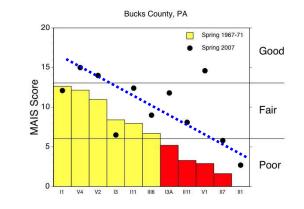
 56% of the nation's river and stream miles do not support healthy populations of aquatic life

US EPA - Draft Report: National Rivers & Streams Assessment 2008-2009

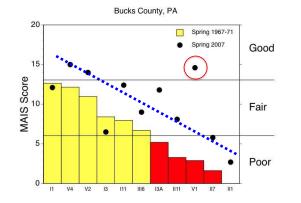

Has the condition of streams of the Delaware River Basin improved or been maintained?

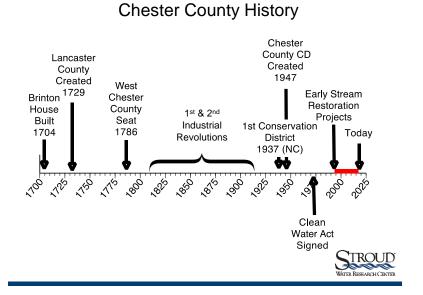





Stream Conditions Have Improved!

But not a lot recently





Over 40 years, stream condition generally improved or maintained

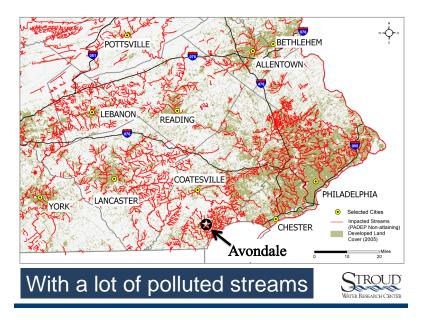
Again, poor streams rarely become great streams.

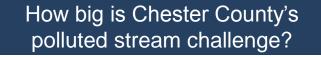
Are current environmental laws protecting our streams and rivers? Are current environmental laws protecting our streams and rivers?

Yes

Good evidence many streams are cleaner Good evidence many streams are still polluted, and not improving


No

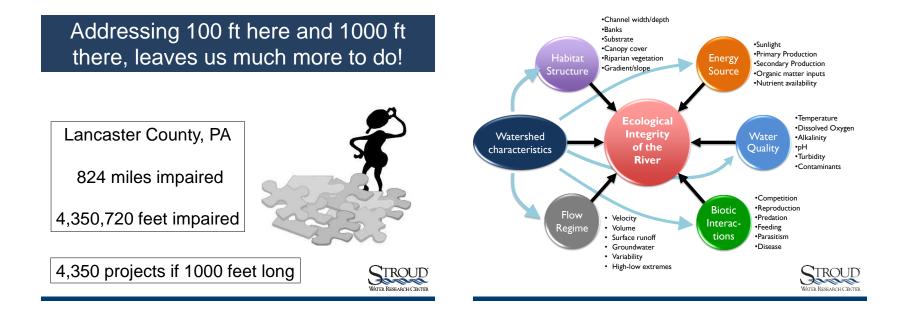

W- OF E


Streams

___ Miles 20

STROUD WATER RESEARCH CENTER

Chester County, PA


957 miles impaired

5,052,960 feet impaired

5,053 projects if 1000 feet long

Anthropogenic factors affecting stream macroinvertebrates

- ➤ Temperature hot → cold or cold → hot (thermal pollution from power plants, dams, stormwater, climate change)
- Current fast → slow dams and diversions, hydropeaking (wet/dry, armoring)
- ➤ Substrate boulder & cobble → sand & silt (field and channel erosion, but also armoring)
- ► Food leaves → algae or fine particles (deforestation, grass buffers, organic waste) FREE REFERENCE OF THE REFERENCE O

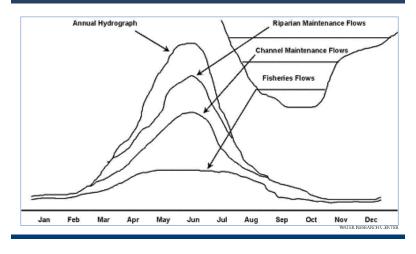
Anthropogenic factors affecting stream macroinvertebrates

Water chemistry

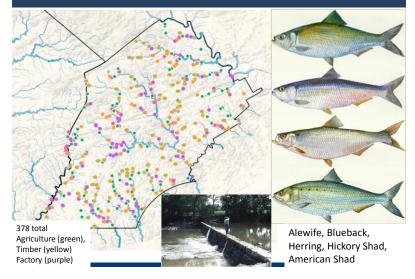
- Dissolved oxygen sag (sewage or other high Biological or Chemical Oxygen Demand)
- pH/Alkalinity acid mine drainage, acid rain
- Petroleum Oils (mosquito control)
- Toxins (metals, pesticides, pharmaceuticals, personal care products)

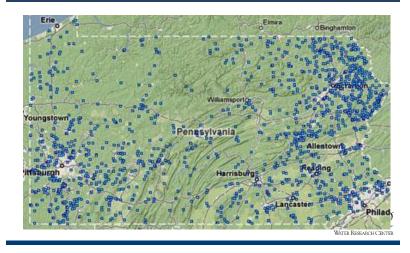


Human modification of streams (targets of restoration)


- <u>1 Modifications of Natural Flow Regimes</u>
- 2 Watershed Modifications
- <u>3 Pollution</u>
- <u>4 Non-native Species</u>

<u>5 – Global Change</u>




Environmentally Significant Flows But also temperature, oxygen, food, substrate

Mill Dams in Chester County - 1847

Dams in Pennsylvania Barriers to movement

Channelization and constrainment

Kankakee River Indiana & Illinois

ILLINOIS INDIANA

<u>1 – Modifications of Natural Flow Regimes</u>

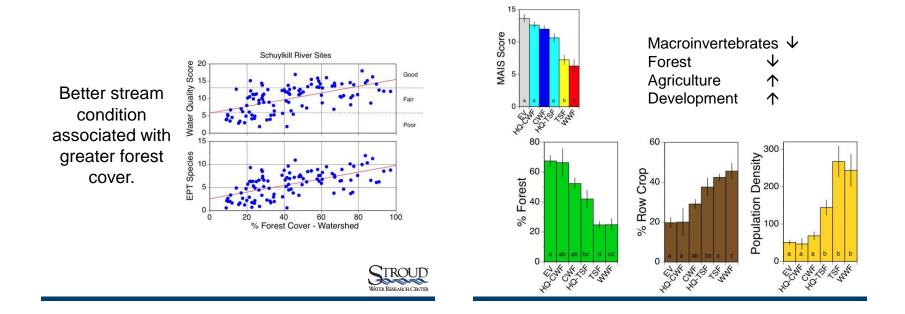
2 – Watershed Modifications

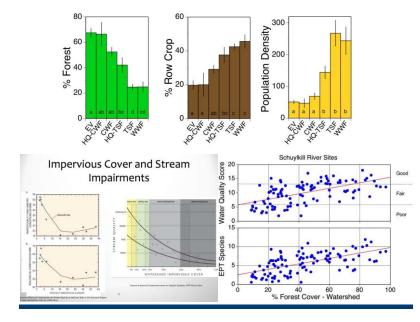
3 - Pollution - the presence in or introductioninto the environment of a substance or thingthat has harmful or poisonous effects

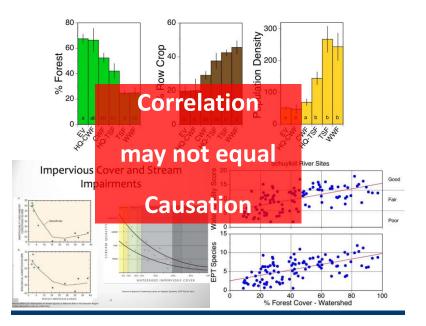
<u>4 – Non-native Species</u>

<u>5 – Global Change</u>

2–Watershed modifications from changes in land use during human settlement


- **Rural** forest removal, agriculture, excessive grazing in former forests or grasslands
- **Urban** increased impervious surfaces from roads, houses, buildings (storm runoff)
- **Both** riparian integrity (presence?, size, age, able to function as a buffer or part of stream?)
- All of the above (dams and diversions, channelization and constrainment, watershed modifications) equal habitat modification and loss




Common Landscape Predictors of Stream Degradation

- % Forest
- % Agriculture
 - o Row Crop vs Pasture
 - Livestock (density, barnyards)
- % Urban
 - \circ Population Density (individuals per sq km)
 - \circ % Developed (high, medium, low intensity)
 - \circ % Impervious Cover

<u>1 – Modifications of Natural Flow Regimes</u>

2 – Watershed Modifications

<u>3 - Pollution - the presence in or introduction</u>into the environment of a substance or thingthat has harmful or poisonous</u>

<u>4 – Non-native Species</u>

5 – Global Change

Pollution

3. Pollution

♦ introduction into the environment by humans of something (substance, energy, land use practice) that is likely to interfere with the natural process of that environment and or the legitimate uses of the environment

•History of water pollution

- ♦ began with the change from migratory to sessile state of man
 - ♦ cut down forests, farmed land (upland areas)
 - population densities increase, accumulation of human wastes and need for disposal
 - water sources affected by both of these, and was an easy answer to disposal (out of sight)

Pollution point source - at the pipe; non-point source - diffuse points of entry

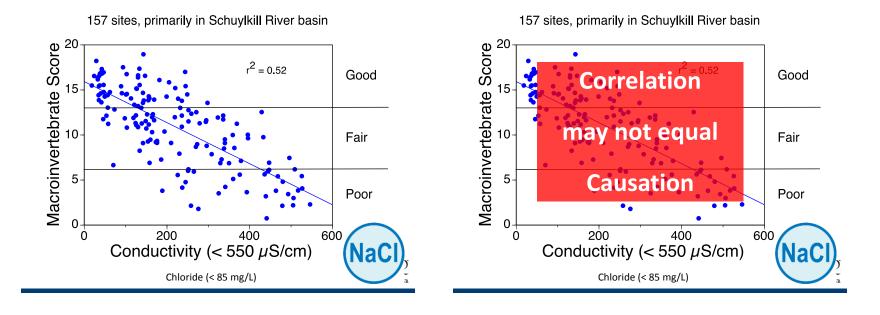
- 1. Pathogen (human health issues-fecal coliform, cryptosporidium, giardia)
- 2. Poisons (industrial wastes, pesticides, herbicides, urban runoff, oil)
- **3. Organic** (dissolved and particulate residues ie untreated sewage, farm and manufacturing waste)
- 4. Nutrient (fertilizers, treated sewage, farm, manufacturing effluent, aerial deposition)
- 5. Physical (sediment, habitat change, temperature) see #1 and 2 above for physical changes

Impact of pollution

- In all cases of poisons, organics, nutrients, and physical
 - **loss of species** (unless only a minor nutrient increase that might support a few more species)
- In some cases

increase abundance (fertilization effect exploited by survivors)

In most cases


decrease abundance (depends if tolerant taxa can exploit conditions)

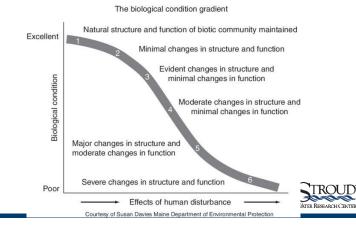
DO Sag Curves

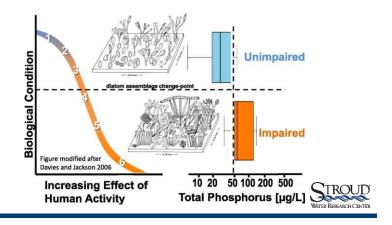
Dissolved Oxygen Stress Common pre-Clean Water Act Not common now

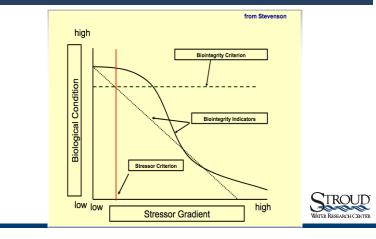


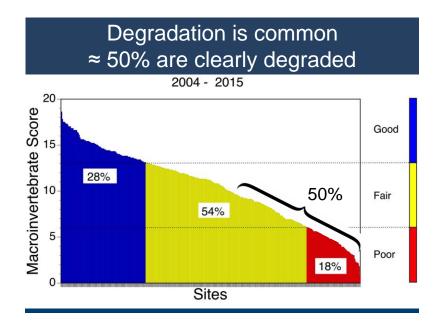
Salt Illustrates Land/People Connection to Water:

Toxins: Salt Oils Metals Sealants Herbicides Insecticides Soaps


Drugs Personal Care Fertilizers


Salt Illustrates Land/People Connection to Water:


Building from Stream Degradation Curve – a Dose Response Curve



Stream Degradation Curve – Contributes to Definition of Impaired

Stream Degradation – the shape of the degradation curve is key

Why are we not seeing streams delisted, or at least larger improvements?

1.Not Enough Time?

2.Not Enough Intensity?

3.Wrong Prescription?

4. Missed Something?

Case Studies – Evidence of Success

Streams Impacted by Acid Mine Drainage

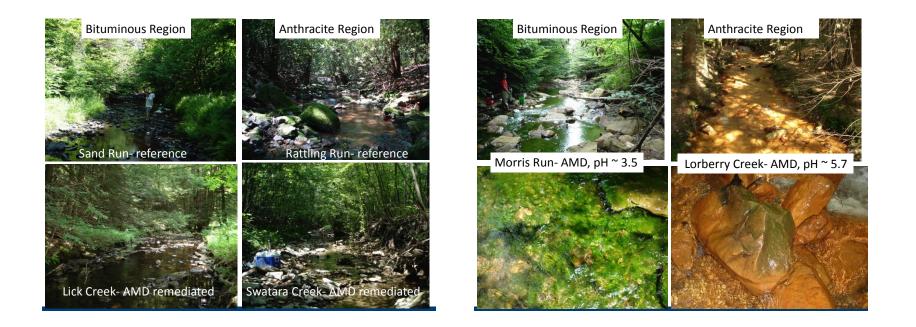
Urban Streams

Agricultural Streams

Case Study – Acid Mine Drainage

Acid Metals (Fe, Al) Sulfate Ecological Applications, 22(8), 2012, pp. 2144-2163 © 2012 by the Ecological Society of America

Abandoned coal mine drainage and its remediation: impacts on stream ecosystem structure and function


Thomas L. Bott, 1,4 John K. Jackson, 1 Matthew E. McTammany, 2 J. Denis Newbold, 1 Steven T. Rier, 3 Bernard W. Sweeney, 1 and Juliann M. Battle 1

¹Stroud Water Research Center, Avondale, Pennsylvania 19311 USA ²Department of Biology, Bucknell University, Lewisburg, Pennsylvania 17837 USA ³Department of Biological and Allied Health Science, Bloomsburg University, Bloomsburg, Pennsylvania 17815-1301 USA

Reference, remediated, and AMD impacted streams draining watersheds with either historic bituminous or anthracite coal mining

Lick Creek - AMD remediated using limestone diversion wells, vertical flow wetlands, and settling ponds for metal precipitates

Upper Swatara – AMD remediated using limestone diversion wells and reclamation of mine-waste-laden land adjacent to study reach

10 000] A

Fig. 2. (A) Total macroinvertebrate densities shown by major group in reference, remediated, and abandoned mine drainage (AMD)-impacted streams in the bituminous and antitractic coal fields or Pennylynamia. EPT functs for macroinvertebrate richness, EPT than chicks, and macroinvertebrate aggregated index for stream scores for each study stream.

TABLE 2. Results of Tukey's test comparing densities and community structure measures from reference (Ref), remediated (Remed), and AMD-impacted (AMD) sites within bituminous and anthracite regions.

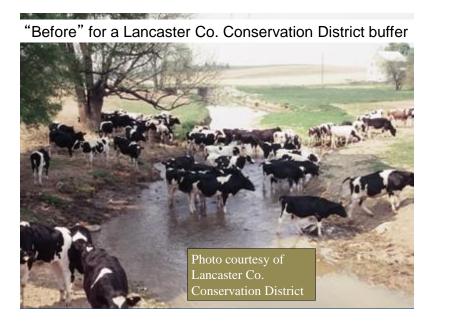
	Bituminous			Anthracite		
Parameter	Ref	Remed	AMD	Ref	Remed	AMD
Total density	a	ь	b	a	ь	с
EPT density	a	a	b	a	ь	с
Diptera density	a	ь	ab	a	ь	ь
Oligochaeta density	a	ь	ab	a	a	ь
Other density	a	a	a	a	ь	ь
Total richness	a	ab	b	a	ь	ab
EPT richness	a	ab	ь	a	ь	ь
MAIS score	a	a	ь	a	ь	ь

Note: Sites sharing the same letter (a, b, c) did not differ statistically (P > 0.05). EPT are taxa in Ephemeroptera, Plecoptera, and Trichoptera. The MAIS score is the macroinvertebrate aggregated index for streams score (Smith and Voshell 1997).

Case Study – Agricultural Stream

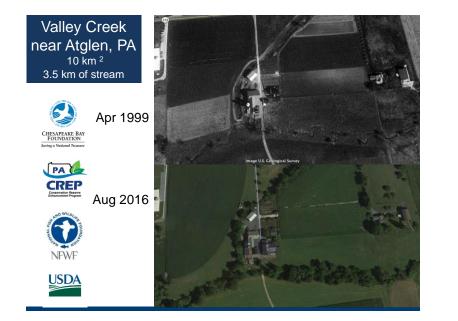
Agricultural runoff – fields, barnyards, roads...

Volume Sediment Manure Fertilizer Pesticides



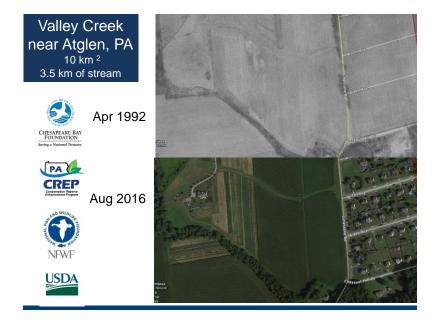
Agricultural Stream Syndrome

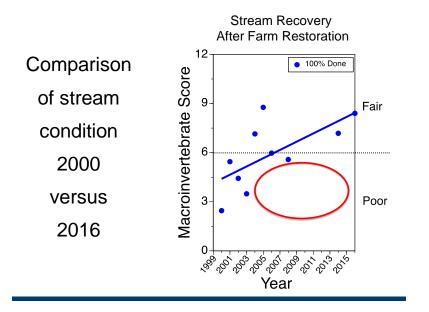
	Impact	Remediation		
Hydrology	 ↑ Volume ↑ Peak depth ↑ Flood frequency ↓ Baseflow 	Some improvements possible with better field management and added Infrastructure		
Geomorphology		Some natural improvements possible, Natural Stream Design		
Temperature	↑ Temperature	Shade from riparian forest		
Chemistry	 Nutrients Toxins Sediments 	Some possible with field and barnyard treatment, ↓ Non-point sources		
Biology		Not common yet		



•Improved water quality: nutrient, sediment, pesticide, and bacteria reductions

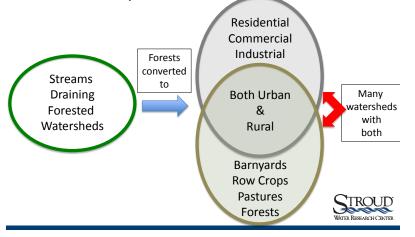
•Improved watershed/stream structure & function





We need a <u>streamside forest</u> (not just a few trees) next to a small stream if we want the ecosystem to be natural and healthy

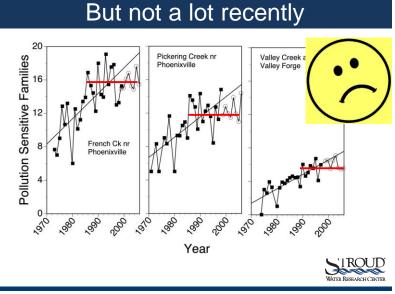
> Flow Erosion Morphology Temperature Food Resources Nutrient Processing Organic Matter Processing



Case Study – Urban Stream

Urban Streams – drain watersheds with significant (but maybe not entirely) residential, commercial, and industrial development

Urban Stream Syndrome		
	Impact	Remediation
Hydrology	 ↑ Volume ↑ Peak depth ↑ Flood frequency ↓ Baseflow 	Some improvements possible with Green Infrastructure
Geomorphology	 ↑ Width ↑ Depth ↓ Channel complexity 	Some improvements possible with Natural Stream Designs
Temperature	↑ Temperature	Shade Reduced retention
Chemistry	↑Nutrients ↑Toxins	Some possible with wastewater treatment, ↓ Non-point sources
Biology	✤ Sensitive species	Not common yet


Watershed-Scale Evaluation of a System of Storm Water Detention Basins

Clay H. Emerson, M. ASCE¹; Claire Welty²; and Robert G. Traver, M. ASCE³

Abstract: The effectiveness of an existing system of storm water detention basins operating at the watershed scale is evaluated. Data utilized in the study were collected from Valley Creek watershed in Chester County, Pa., which has undergone rapid development from the westward spread of suburban Philadelphia. Since the late 1970s, more than 100 storm water detention basins have been constructed in this 62 km² (24 mi²) watershed, each designed on a site-by-site basis. The design objective of these detention basins is to limit a site's postconstruction peak flow rate to or below its predevelopment level for 2- through 100-year storms. To evaluate the watershed-wide

Results from modeling six measured storm events show that the detention basins reduce watershed-wide peak storm flows by an average of only 0.3%, and can potentially increase peak flow rates.

Ecological Applications, 0(0), 2017, pp. 1–11 © 2017 by the Ecological Society of America

> Metacommunity theory meets restoration: isolation may mediate how ecological communities respond to stream restoration

> > Christopher M. Swan^{1,2,4} and Bryan L. Brown³

13 streams studied (near Baltimore MD) 13-41% impervious cover

Each with restored reach and adjacent unrestored reach (up- or downstream of restored reach) Tree planting, bank stabilization, in-channel manipulations

5 headwater streams (1st order)
8 mainstem streams (headwater, 3rd and 4th orders)

Fig. 1. Image of Site 19 taken during the invertebrate sampling. The image was taken at the upstream point in the stream where the restoration project started. Habita in the adjacent, unrestored, upstream reach (top) exhibited a much more homogeneous distribution of substrate sizes compared with the restored reach (bottom). There is a clear addition of larger substrates in the restored reach. Increase light (temperature?) Increased cobble Maybe reduced bedrock

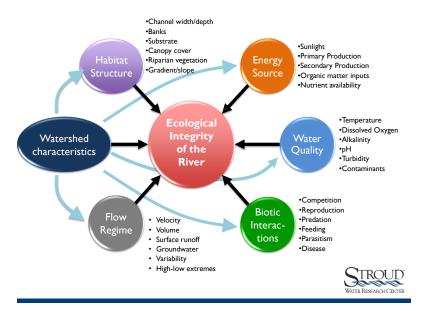
No change in macroinvertebrates

Assumption was that restoration reduced stressors – but maybe not appropriate or adequate.

Also suggested regional pool of potential recolonists may be lacking.

Fig. 1. Image of Site 19 taken during the invertebrate sampling. The image was taken at the upstream point in the stream where the restoration project started. Habitat in the adjacent, unrestored, upstream reach (top) exhibited a much more homogeneous distribution of substrate sizes compared with the restored reach (bottom). There is a clear addition of larger substrates in the restored reach.

Swan and Brown 2017, 2018 Murray-Stoker 2019


... taxon richness was generally low throughout the experiment, a mean of <12 taxa per collection, despite genus-level resolution, indicating that <u>these streams</u> were likely heavily impaired regardless of network position or restoration state. Pg 8

Healthy Watersheds = Healthy Streams

- Identify ecosystems (stream, wetland, groundwater) to be protected and <u>set targets</u>
- Mimic predevelopment water balance
- Implement stormwater control measures that deliver <u>filtered</u> flows
- Implement stormwater control measures with <u>capacity</u> to store rain events that would produce disturbance to stream biota
- Apply stormwater control measures to <u>all impervious</u> <u>surface</u> in the catchment

Walsh, C.J., et al. 2016. Principles for urban stormwater management to protect stream ecosystems." Freshwater Science 35: 398-411.

My Agenda Today

- Introduce some natural history for stream macroinvertebrates and fish
- Describe stream degradation based on current conditions in the tributaries of the Delaware River Basin
- Summarize evidence of successful or unsuccessful restoration

Issues I addressed today:

- 1) Natural factors that affect the distribution and abundance of aquatic macroinvertebrates and fish?
- 2) Why monitor aquatic macroinvertebrates and fish?
- 3) What are current conditions in the tributaries of the Delaware River?
- 4) What are the major factors that contribute to stream degradation?
- 5) What do case studies show us about the success or failure of stream restoration efforts?

Issues I addressed today:

Natural factors that affect the distribution and abundance of aquatic macroinvertebrates and fish?

- \geq Temperature
- Current \geq
- ۶ Substrate ۶

1)

- Food
- Water chemistry ≻

2) Why monitor aquatic macroinvertebrates and fish?

- 8 Public acceptance
- \geq Ecologically significant
- Variable pollution response ≻
- Temporal perspective ۶
- ۶ Established protocols
- 3) What are current conditions in the tributaries of the Delaware River?
 - Fair half show evidence of degradation
 - > Improving over time
 - \succ But not much recently
- What are the major factors that contribute to stream degradation? 4)
 - Flow regulation/modification >
 - Þ Watershed modifications
 - Pollution ۶
- What do case studies show us about the success or failure of stream restoration efforts? 5)
 - Not enough time >
 - ≻ Insufficient intensity
 - ≽ Wrong prescription
- ≻ Unknown/unrecognized stressors

How do we see more improvements?

1) Do more, try new things.

Research

- Monitor ٠
- 1) Change regulations and recommendations.
 - Demand for clean water ٠ will increase

Stream pollution & degradation reflect choices

We need to help the **public** understand pollution they cannot see

... our problems are not a single pollutant or polluter

On a farm

In a neighborhood

... our problems are not a single pollutant or polluter

Inside house

Outside house

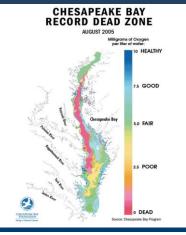
We need the public to prioritize pollution prevention

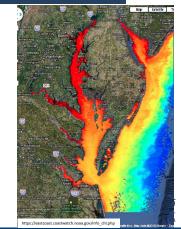
Fertilizer management plan

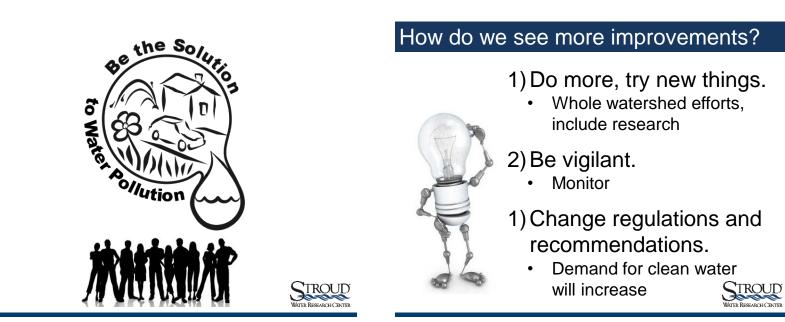
Conservation swale

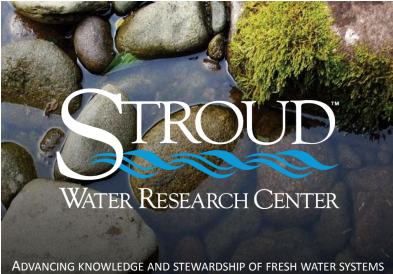
No-till field with ; cover crop

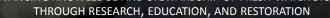
Pollution prevention starts as individual choices




Individual choices translate into local & regional choices




Local & regional choices translate into national choices



9/25/2019

