Watershed 201, Discharge and Total Suspended Solids

Measuring discharge, collecting TSS samples, measuring TSS, and setting up a low-cost TSS lab

June 7, 2019, 9:00a-4:00p, at Willistown Conservation Trust, Rushton Conservation Center, 915 Delchester Rd, Newtown Square, PA 19073

Overview for the day

<u>Agenda</u>

- 9:00-9:15 Welcome, refreshments, light breakfast
- 9:15-9:30 Introductions, overview for the day
- 9:30-10:00 Presentation on discharge, suspended sediment, rating curves, and loads
- 10:00-10:15 Break and prep for group work
- 10:15-12:30 Lab and Field, two groups
 - Lab Review of two low-cost TSS lab setups; measuring TSS
 - Field Measuring discharge and collecting grab samples for TSS
- 12:30-1:00 Lunch (attendees bring bagged lunches)
- 1:00-3:15 Lab and Field, two groups switch
- 3:15-4:00 Overflow, discussion, rating curves
- 4:00-6:00 1:1 meetings

*Everyone does everything, working in pairs

• Everyone does everything, working in pairs. We will be using attendee lab and field results in comparison study

Today

- With Lauren McGrath and Marion Waggoner in Lab
 - Demonstration of methods
 - In pairs
 - Filter samples (already prepared with known concentrations, to be dried and weighed later)
 - Weigh samples (already dried)
- With Dave Bressler, Regan Dohm (plus Maddy and Kacy), and Dave Yake in Field
 - Demonstration of methods
 - In pairs
 - Discharge measurements, flow meter
 - Discharge measurements, orange float
 - Collect and label grab samples

Stream Discharge and TSS

- **Discharge (or flow)** is the volumetric flow rate of water that is transported through a given cross-sectional area
 - Cubic feet per second
 - Cubic feet per meter
- **Total suspended solids (TSS)** is the dry-weight of suspended particles, *that are not dissolved*, in a sample of water that can be trapped by a filter that is analyzed using a filtration apparatus
 - Milligrams per liter

Discharge

Sediment

<mark>φ s</mark> cale	Size range (metric)	Size range (approx. inches)	Aggregate name (Wentworth Class)	Other names
< -8	> 256 mm	> 10.1 in	Boulder	
-6 to -8	64–256 mm	2.5-10.1 in	Cobble	
-5 to -6	32–64 mm	1.26-2.5 in	Very coarse gravel	Pebble
-4 to -5	16–32 mm	0.63-1.26 in	Coarse gravel	Pebble
-3 to -4	8–16 mm	0.31-0.63 in	Medium gravel	Pebble
-2 to -3	4–8 mm	0.157-0.31 in	Fine gravel	Pebble
-1 to -2	2–4 mm	0.079-0.157 in	Very fine gravel	Granule
0 to -1	1–2 mm	0.039-0.079 in	Very coarse sand	
1 to 0	½–1 mm	0.020-0.039 in	Coarse sand	
2 to 1	1⁄4-1⁄2 mm	0.010-0.020 in	Medium sand	
3 to 2	125–250 µm	0.0049-0.010 in	Fine sand	
4 to 3	62.5–125 µm	0.0025-0.0049 in	Very fine sand	
8 to 4	3.90625-62.5 µm	0.00015-0.0025 in	Silt	Mud
> 8	< 3.90625 µm	< 0.00015 in	Clay	Mud
>10	< 1 µm	< 0.000039 in	Colloid	Mud

Context

- Delaware River Watershed Initiative, William Penn Foundation
- Citizen Science, Stroud Center facilitation of continuous monitoring using EnviroDIY Mayfly sensor stations
 - ~70 sensor stations deployed across Delaware River Basin
 - Conductivity, Temperature, Depth (CTD) and Turbidity
 - Solar powered
 - Logging data every 5 minutes
 - Some online, always log to microSD card onsite
 - Stroud Center facilitating use of stations among watershed groups in Delaware Basin (next slide)

WATER RESEARCH CENTER

Distribution

Ridley Creek SL155

http://drwisensors.dreamhosters.com/

http://drwisensors.dreamhosters.com/charts_main_SL155.php

SL155 Turbidity/CTD Logger

This is data from logger SL155. The logger is equipped with a <u>Decagon CTD</u> which measures water conductivity, temperature, and depth; and a <u>Campbell Scientific OBS3+</u> which measures turbidity in two ranges.

> Show all data in the database <u>as table</u> or <u>as CSV text</u> <u>Get raw CSV text file</u>

Latest readings:

At 2019-06-06 11:21:05 EST: CTD Depth= 205.3mm, CTD Temp= 20.1 degreesC, CTD Conductivity= 474.3 uS/cm Turbidity Low= 2.4 NTU, Turbidity High= 1.8 NTU, Board Temp= 27.8 degreesC; Battery= 4.02 volts

Ridley Creek SL155

http://drwisensors.dreamhosters.com/

http://drwisensors.dreamhosters.com/charts_turb_SL155.php

Water Depth and Turbidity

Ridley Creek SL155

What do the stations have to do with today?

- Developing rating curves to enhance sensor station data make data more useful
 - Converting **Depth** (mm) to **Discharge** (m³/s)
 - Converting Turbidity (NTU) to Total Suspended Solids (mg/L)

*Once rating curves developed you can start to talk about concentrations and quantities of material moving in stream (e.g., "sediment loads")

Hydrologic rating curve

Depth ("stage") to Discharge

Data from Pickering Creek at Montgomery School (SHPK5S, SL135)

Hydrologic rating curve

STROUD" WATER RESEARCH CENTER

Braca, Giovanni. (2019). STAGE-DISCHARGE RELATIONSHIPS IN OPEN CHANNELS: PRACTICES AND PROBLEMS.

Hydrologic rating curve

Sediment rating curve

• TSS to Turbidity

Data from Pickering Creek at Montgomery School (SHPK5S, SL135)

Sediment rating curve

Figure 4. Regression relations of turbidity to suspended-sediment concentration for West Branch Brandywine Creek near Honey Brook, Pennsylvania.

Sediment rating curve

Figure 1. Relationship curve between turbidity and total suspended solids at the Duke Forest site.

Blatt, Ethan et al. "Influences of Windthrow in Forested Stream Buffers." (2015).

What to do with rating curves?

USE THE EQUATION

Apply depth/discharge rating curve equation to Depth data to transform it to Discharge data

•

Date, time	CTDepth (mm)	Discharge (m³/s) Sensor Depth (x) into Discharge Rating Curve
6/7/19, 8:00a	465.3	0.286
6/7/19, 8:05a	480.4	0.299
6/7/19, 8:10a	491.4	0.308
6/7/19, 8:15a	503.5	0.318
6/7/19, 8:20a	515.3	0.328

*Example only

What to do with rating curves?

Sum to get individual storm, daily, monthly, seasonal loads, etc.

Context

- Citizen Science, Stroud Center facilitation of usage of EnviroDIY sensor stations
 - Technical support, troubleshooting, etc.
 - Coordinating efforts among managers, volunteers/citizen scientists, professional scientists, teachers, students
 - Online tools
 - Sensor station data: Monitor My Watershed (<u>http://monitormywatershed.org/</u>)
 - Sensor station data: <u>http://drwisensors.dreamhosters.com/</u> SL155 for today
 - Delaware Basin Sensor Stations online group (private group via <u>https://wikiwatershed.org/</u>)
 - EnviroDIY (<u>https://www.envirodiy.org/</u>)
 - Manuals and guidance materials all posted to online group and available from Stroud Center
 - Data sheets Field Visit Data sheet, Stream Discharge Data sheet
 - Data analysis tools Stage to Area predictor, discharge rating curve calculator, load calculator
 - Workshops, trainings, user group meetings, 1:1 work
 - Presentations and articles

Stroud support

- Citsci support personnel
 - **David Bressler**, Stroud main contact
 - **Shannon Hicks**, Stroud high level technical support
 - Rachel Johnson, Stroud technical support, field assistance, small workshop facilitation
 - Matt Gisondi, Stroud data analysis (rating curves, loads), field assistance, 1:1 training
 - Christa Reeves, Stroud/Musconetcong WA regional assistance, northern Delaware Basin
 - Carol Armstrong, Stroud/PSU Master Watershed Stewards citizen science volunteer assistance, field maintenance and storm sampling, PSU Master Watershed Stewards mentor
 - WHAT (Yake/Waggoner/Ward) Watershed Hydrological
 Assessment Team, technical support on hydrology and sediment
 - Dave Arscott (ex dir), John Jackson (senior sci), and Matt Ehrhart (dir of restoration) original citsci project designers

Important Field Work

• Maintenance – every two weeks

- Clean sensors
- Clean around logger
- Complete Field Visit Data sheet
- Other site observations, upkeep, photos, etc.
- Enter data online <u>https://wikiwatershed.org/drwi/;</u> pass: drwi

Quality Control – quarterly

- Clean sensors
- QC Depth
- QC Chemistry
- SD card swapping (data download)

Biweekly – Maintenance and sensor cleaning

Envir	ODIY Field V	isit Data		QUALITY	CONTROL - CHEMISTR	Y DATA (Rec frequend	v: auarterly	and/or more	freauently as nee	ded)
WATER RESEARCH CENTER Enter all data or www.stroudcenter.org	nline: wikiwatershed.org/	drwi; password: drwi	>	Parameter	QC Hand-held Meter Result	QC Time QC AM	PM? QC E	ST/EDT?	Sensor Station Result	Sensor Station Time (Military, EST)
Name(s):				Conductivity (uS/cm):	AM/P	M ES	T/EDT		,
Site ID:	LoggerID:			Temperature (degC)	:	AM/P	M ES	T/EDT		
Stream Name:	Location:			Turbidity (NTU):		AM/F	M ES	T/EDT		
GPS (Lat/Long):	Date:	Arrival Time: AM/F	M? *EST/EDT?	Dissolved Oxygen (I	mg/L):	AM/F	M ES	T/EDT		
Bhotos 2 Vacilla	*EST=Eastern	Standard Time; EDT=Easte	m Daylight Time		QUALITY CONT	ROL CHEMISTRY FI	LD METER	INFORMATI	ON	
Photos ? Yes/No	(Daylight Savin	gs)		Parameter	Field Meter Brand/I	Model/Serial # or ur	ique ID I	Meter calibr	ated? Standar	d Calibration
Precipitation last 24 Hours? Yes/No Amount:	Water Clarity (Clear, Cloudy, Muddy):		Conductivity (uS/cm	n):			Yes/No)	
General Notes/ Photo Descriptions:	·			Temperature (degC)	:			Yes/No)	
				Turbidity (NTU):				Yes/No)	
				Discolved Oxygen (mg/L):			Vec/M	3	
					s	ENSOR STATION MA	INTENANCE	E		
				Sensors Submergeo	1? Yes/No scribe in Notes.		Notes (Desc	cribe specifi	ic sensor station	management
SENSOR CLEANING (Recommende	d frequency: weekly or biweekl	y; monthly if only CTD senso	r)	Location of Soneore	Changed2 Vec/No			i ung outor i		
*Cleaned Sensors? Yes/No If Yes, exact time:	AM/PM? EST/	EDT? *Clean >5 min. befo	ore grab sampling	If yes, explain in not before changing local	tes. *Please consult Stro tion of sensors.	oud Center				
GRAB SAMPLES (Rec frequency: Situational; for	rating curves, collect when water	is high/turbid or higher than no	ormal conductivity)	Retrieved Memory C	ard? Yes/No					
Grab Sample Taken? Yes/No	Time collected	(to minute): AM/	PM? EST/EDT?	(Rec frequency for Q0 if not online)	C: quarterly if online; biw	eekly-monthly				
Sample Number:	Volume:			Changed Patteries?	Voc/No					
Bottle Type:	Date Shipped:				Teshio					
Lab Sent To:	Notes:			Cleaned Solar Panel	? Yes/No					
*SENSOR STATION DATA TO MA	TCH WITH GRAB SAMPLE LAB	RESULTS (Complete in field	l or office)	Other sensor station	n maintenance? Yes/No	0				
Sensor station Conductivity (uS/cm):	Time (military):	Not applicable	Always EST	(If Yes, describe in N	lotes)					
Sensor station Turbidity (NTU):	Time (military):	Not applicable	Always EST	0.	THER IN-SITU PARAMETI	ERS (e.g., Nitrate, Pho	sphate, Chlo	oride, pH, Dis	solved Oxygen)	
*For use in Turbidity/TSS and Conductivity/Chlorid time nearest to grab sample collection time. Can load from microSD card). Acquire final grab samp	le rating curve development. F be completed in field (by acces le lab results from Stroud Ceni	Record sensor station Cond sing online data) or in office fer (or lab that processed sa	and Turb data at (online or down- mple).	Parameter	Res	sult	Bra	and/Model		
QUALITY CONTROL - WATER LEVE	EL DATA (Rec frequency: quarte	rly and/or more frequently o	is needed)							
*Staff Gauge Height (m):	Time:	AM/PM?	EST/EDT?							
*Sensor Station Water Depth (mm):	Time (military):	Not applicable	Always EST			OTHER INFOR	MATION			
PQC Sensor Station Water Depth (mm):	Time:	AM/PM?	EST/EDT?	Field Duplicate Take	n of Grab Sample? Ye	s/No Flo	v Measuren	nent w/ Neu	trally Buoyant O	bject? Yes/No
Offset (=Staff Gauge Height - Sensor Station Wa	ater Depth)(mm):			Performed Cross Se	ction Survey? Yes/No	Flo	v Measuren	nent w/ ano	ther method? Ye	s/No
a - Staff Gauge Height and Sensor Station Water L b - Use metric ruler to measure from pressure trans	Depth readings should be from sducer (white disc in CTD sens	about the same time (+/- 5 m or) to water surface. Note -	ninutes). this depth mea-	Flow Measurement v	v/ Flow Meter? Yes/No) If Y	es, explain i	in Notes	and motious 16	
sure may be slignly unierent from the sensor-mea	surea aeptri but snoula De CON	watern over time.								

Quarterly – Quality Control

STROUD Envir	oDIY Field V	visit Data	
WATER RESEARCH CENTER Enter all data or	nline: wikiwatershed.org	g/drwi; password: drwi	>
www.stroudcenter.org		5	
Name(s):			
Site ID:	LoggerID:		
Stream Name:	Location:		
GPS (Lat/Long):	Date:	Arrival Time: AM/F	PM? *EST/EDT?
Photos? Yes/No	*EST=Easterr	n Standard Time; EDT=Easte	rn Daylight Time
Procinitation last 24 Hours? Yes/No Amount:	(Daylight Savi	Ings)	
Conserved National Descriptiones	Water Clainty	(Clear, Cloudy, Muddy).	
SENSOR CLEANING (Recommende *Cleaned Sensors? Yes/No If Yes, exact time:	d frequency: weekly or biweek AM/PM? ES	kly; monthly if only CTD senso T/EDT? *Clean >5 min. bef	r) ore grab sampling
Grab Sample Taken? Yes/No	Time collecte	d (to minute): AM/	PM? EST/EDT?
Sample Number;	Volume:		
Bottle Type:	Date Shipped	1:	
Lab Sent To:	Notes:		
*SENSOR STATION DATA TO MA	TCH WITH GRAB SAMPLE L/	AB RESULTS (Complete in field	d or office)
Sensor station Conductivity (uS/cm):	Time (military):	Not applicable	Always EST
Sensor station Turbidity (NTU):	Time (military):	Not applicable	Always EST
*For use in Turbidity/TSS and Conductivity/Chloric time nearest to grab sample collection time. Can load from microSD card). Acquire final grab samp	de rating curve development. be completed in field (by acce ole lab results from Stroud Ce	Record sensor station Cond essing online data) or in office nter (or lab that processed sa	and Turb data at (online or down- ample).
QUALITY CONTROL - WATER LEVI	EL DATA (<i>Rec frequency: quar</i>	terly and/or more frequently (as needed)
*Staff Gauge Height (m):	Time:	AM/PM?	EST/EDT?
*Sensor Station Water Depth (mm):	Time (military):	Not applicable	Always EST
^b QC Sensor Station Water Depth (mm):	Time:	AM/PM?	EST/EDT?
Offset (=Staff Gauge Height - Sensor Station Wa	ater Depth)(mm):		
 Otoff Course Unight and Consor Otation Water I 			

QC Ha Parameter Meter	nd-held Result QC T	ime QC	AM/PM?	QC EST/EDT?	Sensor Result	Station	Sensor Station Time (Military, EST)
Conductivity (uS/cm):	-	A	M/PM	EST/EDT			2011
Temperature (degC):		A	M/PM	EST/EDT			
Turbidity (NTU):		A	M/PM	EST/EDT			
Dissolved Oxygen (mg/L):		A	M/PM	EST/EDT			
QUAL	ITY CONTROL C	HEMISTR	Y FIELD N	IETER INFORMA	TION		
Parameter Field Mete	r Brand/Model/	Serial # o	r unique	D Meter cali	brated?	Standard	d Calibration
Conductivity (uS/cm):				Yes/	No		
Temperature (degC):				Yes/	No		
Turbidity (NTU):				Yes/	No		
Dissolved Oxygen (mg/L):				Yes/	No		
	SENSOR	STATION	MAINTE	NANCE			
Sensors Submerged? Yes/No If no or partially, describe in Note	s.		Notes action	(Describe spec	ific sens r issues):	or station	management
Location of Sensors Changed? Y If yes, explain in notes. *Please of before changing location of sensors	e <mark>s/No</mark> onsult Stroud Cei	nter					
Retrieved Memory Card? Yes/No (Rec frequency for QC: quarterly if o if not online)	online; biweekly-ı	nonthly					
Changed Batteries? Yes/No			+				
Cleaned Solar Panel? Yes/No							
Other sensor station maintenance (If Yes, describe in Notes)	e? Yes/No						
OTHER IN-SITU I	ARAMETERS (e.g	., Nitrate,	Phosphat	e, Chloride, pH, I	Dissolved	Oxygen)	
Parameter	Result			Brand/Model			
	(OTHER IN	FORMATI	ON			
Field Duplicate Taken of Grab Sar	nple? Yes/No		Flow Mea	surement w/ Ne	eutrally B	uoyant Ol	bject? Yes/No
Performed Cross Section Survey	Yes/No		Flow Mea	surement w/ an	other me	thod? Ye	s/No

Importance of sensor cleaning and QC

Conductivity, temperature and depth readings before cleaning

Importance of sensor cleaning and QC

Conductivity, temperature and depth readings after cleaning

<u>Conductivity</u> change of ~60 uS/cm <u>Depth</u> change of ~5mm; <u>Temp</u> change of 0 deg C

Manuals

- EnviroDIY Sensor Station Operation Manual V1, DRWI
 - Operation manual for CTD/Turbidity EnviroDIY sensor stations (Delaware River Watershed Initiative context)
 - Access web link via Delaware Basin Sensor Station online group, Uploaded Files tab, "Guidance docs" category; link: <u>https://docs.google.com/document/d/17iWKFOjD6tSFT6-</u> <u>a5mltXlgO8uhXjsA_voGDVRxEBTI/edit?usp=sharing</u>
- EnviroDIY Mayfly Sensor Station Manual
 - Comprehensive building, coding, installation, management
 - Does not contain DRWI specific info, e.g., online EnviroDIY Field Visit Data sheet
 - Access via EnviroDIY.org: <u>https://www.envirodiy.org/mayfly-sensor-station-manual/</u>

Videos

- Stroud sensor station video tutorials:
 - Installation
 - https://www.envirodiy.org/videos/
 - Youtube:

https://www.youtube.com/results?search_query=envirodiy+ mayfly+data+logger+steps+1-5

- Link also on Delaware Basin Sensor Stations online group forum
- Sensor cleaning
- Data download
- Sensor bundle removal
- Discharge calculator, Stage-to-Area predictor, Load calculator

Delaware Basin Sensor Station online group

- Weekly reports from Carol Armstrong
- General updates from Bressler
- Uploading lab results, rating curves, etc.
- Uploaded Files tab multiple categories lots of files here
- Guidance docs for use of the site and the forum
- Forum topics important ones pinned to the top

Stream Discharge Data sheet

Stream Discharge Data sheet

Stream Discharge Data sheet

WATE	TROU ER RESEARCH (www.stroudcenter	JD Center org		Stream	Discharge Data	
Name	e(s):					
Site I	D:		GPS (Lat	/Long):		eter Type:
Logg	er ID:		Date:		Staff Gage Height at start (m):	
Strea	m Name:		Start Tim	e: AM/PM	Staff Gage Height at end (m):	Serial Number:
-			StopTime	: AM/PM	Sensor-Reported Water Depth at start (mm):	Calibration Date:
Locat	tion:		Time	Zone: EST / EDT	Sensor-Reported Water Depth at end (mm):	
		CR	ROSS SECTION A	ND VELOCITY	[NEUTIN
When so depth are each into facing di gline, ar measure Point	afely wadeable, t cross the stream terval. Make note lownstream. If w nd Water Depth. e/record velocity Points to Note LPINRPIN LEW/REW	ake a wetted cross s . The tagline should of the RPIN/LPIN (ri adeable, whether us lf not wadeable, used data in Neutrally Bu Distance Along Tag- line (m)	section measureme be strung between ight/left bank pin) a sing a flow meter or e Predicted Wetted royant Object secti Water Depth (m)	nt, recording the distance a the bank pins. If a velocity ind REW/LEW (right/left edg rneutrally buoyant object, a Cross Sectional Area estim on (right) or Unwadeable FI Velocity (m/s) (Using Flow Meter)	long the measuring tape (tagline) and the wate meter is available, record the water velocity at e of water). Right and left are determined when lways record Points to Note, Distance Along Te ate (from StagetoAreaPredictor spreadsheet) and w Meter Velocity section (back).	r Float object through main path o. The measured transect should be halfway between the start and stop point. The total distance should be enough to ensure a travel time of >5 seconds. TOTAL Travel Distance (m): Start-to-Transect Distance (m):
1						Transect-to-End
2						Distance (m):
3						Float # Travel Time (seconds)
5						1
6						2
7						4
8						5
9						6
10						7
11						8
12						9
13						10

Water level as measured by staff gauge at time when flow measurements started and when flow measurements finished

Water level as measured depth sensor at time when flow measurements started and when flow measurements finished

QUALITY CONTROL WATER LEVEL DATA

Staff Gauge Height:

On-site visual measure of water depth; this is used for QC of sensor depth and also used for discharge/depth rating curve

EnviroDIY Field Visit Data

RESEARCH CENTER Enter all data online: wikiwatershed.org/drwi; password: drwi

Namo(s)

(-)-				
Site ID:	LoggerID:			
Stream Name:	Location:			
GPS (Lat/Long):	Date:	Arrival Time:	AM/PM?	*EST/EDT?
Photos? Yes/No	*EST=East (Daylight S	tern Standard Time; EL Savings))T=Eastern Da	iylight Time
Precipitation last 24 Hours? Yes/No Amount:	Water Clar	ity (Clear, Cloudy, Mu	ddy):	

General Notes/ Photo Descriptions:

SENSOR STATION - SENSOR CLEANING

*Cleaned Sensors? Yes/No If Yes, exact time: AM/PM? EST/EDT? *Clean >5 min. before grab sampling

GRAB SAMPLE INFORMATION (COLLECT IF WATER IS HIGH/TURBID OR HIGHER THAN NORMAL CONDUCTIVITY)

Grab Sample Taken? Yes/No	Time collected (to minute):	AM/PM?	EST/EDT
Sample Number:	Volume:		
Bottle Type:	Date Shipped:		
Lab Sent To:	Notes:		
*SENSOR STATION DATA TO MAT	TCH WITH GRAB SAMPLE LAB RESULTS (COMPLETE	E IN FIELD OR	OFFICE)

Sensor station Conductivity (uS/cm):	Time (military):	Not applicable	Always EST
Sensor station Turbidity (NTU):	Time (military):	Not applicable	Always EST

*For use in Turbidity/TSS and Conductivity/Chloride rating curve development. Record sensor station Cond and Turb data at time nearest to grab sample collection time. Can be completed in field (by accessing online data) or in office (online or download from microSD card). Acquire final grab sample lab results from Stroud Center (or lab that processed sample).

QUALITY CONTROL WATER LEVEL DATA (STAFF GAUGE AND SENSOR DEPTH)						
*Staff Gauge Height (m): Time: AM/PM?						
*Sensor Station Water Depth (mm):	Time (military):	Not applicable	Always EST			
PQC Sensor Station Water Depth (mm):	Time:	AM/PM?	EST/EDT?			

Offset (=Staff Gauge Height - Sensor Station Water Depth)(mm):

a - Staff Gauge Height and Sensor Station Water Depth readings should be from about the same time (+/- 5 minutes).
 b - Use metric ruler to measure from pressure transducer (white disc in CTD sensor) to water surface. Note - this depth measure may be slightly different from the sensor-measured depth but should be consistent over time.

12.5cm = 0.125m 12.0cm = 0.120m 11.5cm = 0.115m 11.0cm = 0.110m 10.5cm = 0.105m

10.0cm = 0.100m
QUALITY CONTROL WATER LEVEL DATA

QUALITY CONTROL WATER LEVEL DATA

*SENSOR STATION DATA TO MATCH WITH GRAB SAMPLE LAB RESULTS (COMPLETE IN FIELD OR OFFICE

Sensor station Conductivity (uS/cm):	Time (military):	Not applicable	Always ES
Sensor station Turbidity (NTU):	Time (military):	Not applicable	Always ES

*For use in Turbidity/TSS and Conductivity/Chloride rating curve development. Record sensor station Cond and Turb data at time nearest to grab sample collection time. Can be completed in field (by accessing online data) or in office (online or download from microSD card). Acquire final grab sample lab results from Stroud Center (or lab that processed sample).

QUALITY CONTRO)						
Staff Gauge Height (m):	Time:	AM/PM?	EST/EDT?				
*Sensor Station Water Depth (mm):	Time (military):	Not applicable	Always EST				
^b QC Sensor Station Water Depth (mm):	Time:	AM/PM?	EST/EDT?				
Offendel Chaff Course United Courses Station Water Death/unrely							

Offset (=Staff Gauge Height - Sensor Station Water Depth)(mm):

a - Staff Gauge Height and Sensor Station Water Depth readings should be from about the same time (+/- 5 minutes).
b - Use metric ruler to measure from pressure transducer (white disc in CTD sensor) to water surface. Note - this depth measure may be slightly different from the sensor-measured depth but should be consistent over time.

QC Sensor Station Water Depth – hand check of sensor depth – use metric ruler to measure from top of sensor window (where pressure transducer [white disc] is located) to water surface. Compare this number to the depth produced by CTD sensor.

This is intended as a coarse check of sensor function and also is a calibration to the individual sensor function (i.e., it may not be exactly the same as the ruler measurement but the difference should be consistent over time).

Stream Discharge Data sheet

Stream Discharge Data sheet

				UNWADEABLE FLOW METER VELOCITY		
oint	Points to Note LPIN/RPIN LEW/REW	' Distance Along Tag- Water Velocity (m/s) line (m) Depth (m) (Using Fow Meter)		Comments	Take 1-10 flow meter velocity measurements near the cross section the appear to be representative of the velocity of the main flow of the stree. These velocity measurements should taken wherever is accessible considering unwadeable conditions.	
15 16						Flow meter Location in stream Measurement # velocity (m/s) channel
17						1
18						2
19						3
20						4
21						5
22						6
23						7
24						8
25						9
26						10
27						
28						Notes:
29						
30						
31						
32						
33						
34						
35						
36						
37						
20						
39						
40		l				

Or... measure Velocity by using flow meter where possible, i.e., if water is not wadeable (visually assess velocity across channel and use flow meter in a spot that seems representative of overall flow)

$Q = Area \times Velocity$

Stream Discharge Data

Name(s):								
Site ID:	GPS (Lat/Long): Ve			Velocity Meter Type:				
Logger ID:	Date:	Staff Gage Height at start (m):						
Stream Name:	Start Time: AM / PM	Staff Gage Height at end (m):	Serial Number:					
	StopTime: AM / PM	Sensor-Reported Water	Calibratio	on Date:				
Location:	Time Zone: EST / EDT	Sensor-Reported Water						
CD000		Depth at end (mm):						
CRUSS	SECTION AND VELOCITY		NI	EUTRALLY B	OOYANT OBJECT			
When safely wadeable, take a wetted cross section depth across the stream. The tagline should be str each interval. Make note of the RPIN/LPIN (right/le facing downstream. If wadeable, whether using a gline, and Water Depth. If not wadeable, use Pred	n measurement, recording the distance al rung between the bank pins. If a velocity n ft bank pin) and REW/LEW (right/left edge flow meter or neutrally buoyant object, ah icted Wetted Cross Sectional Area estimat	ong the measuring tape (tagline) and the water neter is available, record the water velocity at of water). Right and left are determined when ways record Points to Note, Distance Along Ta- te (from StagetoAreaPredictor spreadsheet) and	Floa The betw dista time	Float object through main path of the stream. The measured transect should be halfway between the start and stop point. The total distance should be enough to ensure a travel time of >5 seconds.				
Points to Distance	t Object section (right) or Unwadeable Flow	w Meter Velocity section (back).	– TOT Trav	TOTAL Travel Distance (m):				
Point LEW/REW Line (m) Do	Water Velocity (m/s) epth (m) (Using Flow Meter)	Comments	Star	rt-to-Transe tance (m):	ect			
			Tra	nsect-to-En stance (m):	d			
3			_ _	Float #	Travel Time (seconds)			
- Discharge (m ³ /s) - Wett	$rad Area (m^2) x Velocit$	v (m/s)	- 1	1				
Discharge (III /s) = Wett		y (11/3)	- 1	2				
6				3				
7				4				
8			- -	5				
10			- -	6				
11			- -	7				
12			- -	ð				
13				9				
14			- -	10				

WATER RESEARCH CENTER

- Amount of water flowing in stream as a measure of time
 - Cubic feet per second, cfs
 - Cubic meters per second
- "Q" = Discharge

Discharge

Q = Area (of wetted stream cross section) x Velocity (of flowing water)

Area = Width x Depth

Measure stream width with measuring tape - wetted edge to wetted edge

Width x Depth = Area

Measure stream depth across the channel

Width x **Depth** = Area

Coarse by-hand calculation of Area

Get Coarse Depth by averaging your different depth measurements

(D1+D2+...D10)/10 = Average Depth

Average Depth x Width = Area

More precise calculation of Area

Width of individual block x Depth individual block = **Area of single block**

*triangles at edges (1/2base x height)

Area of Block 1 + A_{B2} + A_{B3} ...+ A_{B10} = Total Area

$Q = Area \times Velocity$

Measure Velocity with:

• Flow Meter - measure velocity at the same place where depth measurements were made

OR

• Neutral Buoyant Object (e.g., an orange) – measure velocity in main flow of stream multiple times

Flow meters

$Q = Area \times Velocity$

Flow meter – measure **Velocity** at 60% of total depth (a little over half way down in the water column)

$\overline{Q} = Area \times Velocity$

0

0.2

0.38

0.39

0.40

0.40

0.40

0.40

0.40

0.40

0.40

0.4

0

2.1

2.6

3.2

3.8

4.3

4.8

5.3

5.7

6.1

6.5

7.0

7.4

8.7

0

0.24

0.26

0.35

0.36

0.36

0.36

0.36

0.36

0.26

0.26

0.1

0

1

2

3

4 5

6

7

8

9

10

11

12

13

14

LEW

REW

RPIN

Start-to-Transect Distance (m): Transect-to-End

Distance (m): 1 2 3 Travel Time (seconds) (record at least 5) 4 5 6

7

8

9

10

$Q = Area \times Velocity$

CROSS SECTION AND VELOCITY

When safely wadable, take a wetted cross section measurement, recording the distance along the measuring tape (tagline) and the water depth across the stream. The tagline should be strung between the bank pins. If a velocity meter is available, record the water velocity at each interval. Make note of the REWLEW (right/left edge of water) and RPINLPIN (right/left bank pin). Right and left are determined when facing downstream. If wadable, whether using flow meter or neutrally buoyant object, always record Points to Note. Distance Along Tagline, and Water Depth. If not wadable, use predicted wetted area (from StagetoAreaPredictor spreadsheet) and measure velocity using Neutrally Buoyant Object section OR take at least one velocity measurement using flow meter from bank (better option).

Point	Points to Note	Distance Along Tagline (m)	Water Depth (m)	Velocity (m/s) (Using Flow Meter)	Comments
1	LPIN	0	0		
2	LEW	2.1	0		
3		2.6	0.2		
4		3.2	0.38		
5		3.8	0.39		
6		4.3	0.40		
7		4.8	0.40		
8		5.3	0.40		
9		5.7	0.40		
10		6.1	0.40		
11		6.5	0.40		
12		7.0	0.40		
13	REW	7.4	0.4		
14	RPIN	8.7	0		

NEUTRALLY BUOYANT OBJECT

Float object through main path of the stream. The measured transect should be halfway between the start and stop point. The total distance should be enough to ensure a travel time of >5 seconds.

TOTAL Travel Dis	stance (m):	5	
Start-to-T Distance	ransect (m):	2.5	
Transect- Distance	to-End (m):	2.5	
	1	15	
	2	16	
	3	16	_
e it 5)	4	18	_
ime ds) leas	5	14	_
/el T con l at	6	17	_
Trav (se corc	7	16	
(rec	8	-	
	9		
	10		

Calculate Q coarsely by hand:

Q = (Width x Average Depth) x Average Velocity (by flow meter or by NBO float)

CROSS SECTION AND VELOCITY

When safely wadable, take a wetted cross section measurement, recording the distance along the measuring tape (tagline) and the water depth across the stream. The tagline should be strung between the bank pins. If a velocity meter is available, recording the water velocity at each interval. Make note of the REWILEW (rightleft edge of water) and RPINLPIN (rightleft bank pin). Right and left are determined when facing downstream. If wadable, whether using flow meter or neutrally buoyant object, always record Points to Note. Distance Along Tagline, and Water Depth. If not wadable, use predicted wetted area (from StagetoAreaPredictor spreadsheet) and measure velocity using Neutrally Buoyant Object section OR take at least one velocity measurement using flow meter from bank (better option).

Point	Points to Note LPIN/RPIN LEW/REW	Distance Along Tagline (m)	Water Depth (m)	Velocity (m/s) (Using Flow Meter)	Comments	TOTAL Travel Dist	tance	(m): 5
1	LPIN	0	0	0		Start-to-Tr	anse m)·	^{ct} 2.5
2	LEW	2.1	0	0		T c	-	
3		2.6	0.2	0.24		Distance (o-Eno m):	2.5
4		3.2	0.38	0.26				
5		3.8	0.39	0.35			1	15
6		4.3	0.40	0.36			2	16
7		4.8	0.40	0.36			3	16
8		5.3	0.40	0.36		e e st5	4	18
9		5.7	0.40	0.36		Tim ds) lea	5	14
10		6.1	0.40	0.36		vel ⁻ cor d at	6	17
11		6.5	0.40	0.26		Tra) (se cord	7	16
12		7.0	0.40	0.26		(re	8	
13	REW	7.4	0.4	0.1			9	
14	RPIN	8.7	0	0			10	

Avg water depth = 0.35m

Avg velocity w NBO = 0.31m/s

NEUTRALLY BUOYANT OBJECT

time of >5 seconds.

Float object through main path of the stream.

distance should be enough to ensure a travel

The measured transect should be halfway

between the start and stop point. The total

Width=7.4-2.1=5.3m Avg velocity w flow meter = 0.27m/s

Qflowmeter = (5.3x.35)x0.27 = 0.5m3/s

Qneutralbuoyobj = (5.3x.35)x0.31 = 0.58m3/s

Q = Velocity x Area

OR...Use Discharge Rating Curve Calculator spreadsheet (or other spreadsheet)

Basic		Cross Section and Velocity Measurements						
Manual Completed Du		Harberg C						
Measurement Completed By:	sier, Hicks, Johnson, Muenz, Armstrong, Builard	, Hugnes, 5	Doints of		Water Depth			
		Point	note:	Distance (m)	(m)	Velocity (m/s)	Comment	
Stream Name:	Pickering Creek] 1	REW	2.41	0	0		
Location:	Phoenixville YMCA	2		2.85	0.16	0.01		
SiteID:	SHPK6S	3		3.4	0.25	0.05		-
Station Latitude / Longitude:	40.10799, -75.51938	4		3.95	0.29	0.05		
Date:	12/12/2017	5		4.6	0.37	0.06		
Start Time in EST	3:10 PM	6		5.4	0.41	0.08		
Stop Time in EST:	3:45 PM	7		6.1	0.51	0.08		-
Staff Gauge Height (m):	0.22	8		6.8	0.5	0.06		
Recorded Sensor Depth (mm):	261	9		7.4	0.42	0.06		
Staff Gage/Sensor Offset (m):	-0.041	10		8	0.34	0.08		
Velocity Meter (if applicable):		11		8.9	0.33	0.08		
Calibration Date of Velocity Meter:		12		9.9	0.25	0.12		
•		13		10.6	0.26	0.13		
Other Notes:	Installed station and cross section	14		11.5	0.27	0.14		
		15		12.3	0.3	0.11		
		16		13.1	0.36	0.13		
		17		13.9	0.4	0.14		
		18		14.7	0.42	0.11		
		19		15.5	0.4	0.12		
		20		16.3	0.38	0.1		
		21		17	0.28	0.07		
		22		17.8	0.22	0.03		
		23		18.6	0.14	0.01		
		24	LEW	20.05	0	0		
Re	sults	25						
Calculated Total Discharge (m³/s):	0.48	26						
		27						
Stream Wetted Width (m):	17.64	28						
		29						
Stream Cross Sectional Area (m ²):	5.45	30						
		21						

i Cent

$Q = Area \times Velocity$

dist depth dist depth vel vel REW 2.44 0.15 0.01 REW 2.41 0.00 0.00 3 0.28 0.06 2.85 0.16 0.01 3.5 0.35 0.16 3.4 0.25 0.05 3.95 0.05 4 0.42 0.19 0.29 0.49 0.17 4.6 0.37 0.06 4.5 5 0.52 0.15 5.4 0.41 0.08 5.5 0.54 0.17 6.1 0.51 0.08 6 0.62 0.10 6.8 0.50 0.06 6.5 0.62 0.10 7.4 0.42 0.06 7 0.60 0.16 8 0.34 0.08 7.5 0.53 0.20 8.9 0.33 0.08 8 0.49 0.28 9.9 0.25 0.12 0.13 8.5 0.50 0.33 10.6 0.26 9 0.44 0.26 11.5 0.27 0.14 9.5 0.35 0.31 12.3 0.30 0.11 10 0.35 0.22 13.1 0.36 0.13 10.5 0.34 0.29 13.9 0.40 0.14 11 0.35 0.25 14.7 0.42 0.11 0.37 0.27 15.5 0.40 0.12 11.5 12 0.40 0.31 16.3 0.38 0.10 17 12.5 0.43 0.39 0.28 0.07 13 0.44 0.37 17.8 0.22 0.03 13.5 0.50 0.28 18.6 0.14 0.01 14 0.51 0.30 LEW 20.05 0.00 0.00 0.48 0.25 Width Avg Depth Avg Vel 14.5 15 0.48 0.23 17.64 0.30 0.08 0.40Q via coarse average 15.5 0.50 0.25 0.48Q via individual blocks 16 0.46 0.22 16.5 0.46 0.20 17 0.38 0.21 17.5 0.35 0.21 18 0.30 0.15 18.5 0.28 0.17 19 0.20 0.15 19.5 0.17 0.17 20 0.13 0.07 20.2 0.10 0.08 LEW 20.46 0.00 0.00 Width Avg Depth Avg Vel 18.02 0.39 0.20 1.43Q via coarse average 1.62Q via individual blocks

Grab samples

- Storm grab samples analyzed at Stroud only for:
 - Total Suspended Solids
 - Chloride
- Collect samples from the range of observed turbidity values at site – i.e., collect samples from dirty water!

Grab samples

- Labeling samples is super important
 - Site identifier
 - Date
 - Time to the minute
 - Very important so that grab sample results can be matched up with sensor reading at the specific time grab was collected
 - Collector

Developing rating curves across the Delaware Basin

- Stroud (Matt Gisondi and interns) to facilitate rating curve development this summer, as time and storms allow
 - Discharge and grab samples
 - Matt will be in touch with groups if he's in the area
 - Assistance welcomed, opportunity for on-site training
 - Spur of the moment because of the nature of storms and field sampling

Rating curves

Data from Ridley Creek at Ashbridge Preserve (PURC1S, SL155), Willistown Conservation Trust, Lauren McGrath

Rating curves

Figure 3. Regression relations of turbidity and suspended-sediment concentration for French Creek near Phoenixville, Pennsylvania.

Sloto, R.A., and Olson, L.E., Estimated suspended-sediment loads and yields in the French and Brandywine Creek Basins, Chester County, Pennsylvania, water years 2008–09: U.S. Geological Survey Scientific Investigations Report 2011–5109, 31 p.

Rating curves

Data from Pickering Creek at Montgomery School (SHPK5S, SL135), Carol Armstrong, George Seeds, and David Kline (and students)

Measuring discharge for rating curve

SL138 - Water Depth

Water Depth (in millimeters)

measure discharge over the range of observed sensor depths – measure discharge at different sensor depths during one or multiple storms

For developing a discharge rating curve

Highlight to zoom in, double-click to zoom out.

Measuring discharge for rating curve

Measuring discharge for rating curve

- Take discharge measurements at different water levels these are then related to the staff gauge levels and sensor depths associated with these discharges
- Discharge (m³/s) = Wetted area (m²) x Velocity of water (m/s)

Collecting grab samples for rating curve

- How to know when to collect grab samples
 - Observe your stream on-site and watch sensor data to know when water gets muddy (see next slide)
 - Collect samples from a range of turbidity values, especially trying to get very muddy water
 - Collect multiple samples ranging in turbidity from a single storm (see next slide) or several storms

Collecting grab samples for rating curve

SL138, Pickering Creek

- Understand range of turbidity values observed at the site, so that you know when to collect grab samples – distribute grabs across the observed range (here 0-140 NTU)
- Understand what amount of rainfall and sensor depth increases cause what levels of turbidity – use this to focus the timing of your grab sampling efforts
- Turbidity sensor must be kept clean through the storm to ensure accurate data

Collecting grab samples for rating curve

SL138,

WATER RESEARCH CENTER

Spreadsheet Calculators

- Discharge Rating Curve Calculator
- Stage to Area Predictor
- Load Calculator

Discharge Rating Curve Calculator

Basic Metadata

Cross Section and Velocity Measurements

Stage to Area Predictor

- Predict Area ("predicted wetted cross sectional area") for use when water is too high to measure width and depth across the channel
- Use predicted Area with measured Velocity (via NBO or point flow meter measurements) to calculate Discharge

Stage to Area Predictor

Load Calculator

📓 🖪 🔊 • 🕲 🖌 📔 🗧 Load Calculator v1.3_example.xlsx - Microsoft Excel											
File Home Insert Page Layout Formulas Data Review View											
ABC [a,		Show/Hide Comment		Protect and Share Workbook						
Spelling Research Thesaurus	Translate New	Delete Previous Next	Show Ink Unprotect	Protect Share Workbook Workbook	Track Changes *						
Proofing	Language	Comments		Cha	anges						
B12 •	f = f = ')ata Import'!B12			2						
4 ^	P	×	1	M	N	0	D	0	D	2	-
1 Discharge Calculator	Rating Curve Equation	Load Calculations		IVI	14	0		4	N		
2 v = mx + b	v = 0.843x -	.2 Cond (uS/cm)	TSS (mg/L)	TSS (mg/m3)	Chloride (mg/L)	Chloride (mg/m3)	Sediment Flux (mg/s)	Chloride Flux (mg/s)	Sediment Load (mg)	Chloride Load (mg)	
3 m (slope)	0.8	43 CTDcond Data from Webpage	Input Turb (x) into TSS Rating Curve	TSS (ma/L) × 1000	Input Cond (x) into Chloride Rating Curve	Chloride x 1000	Discharge x TSS	Discharge x Chloride	Sediment Flux x Time	Flux x Time	
4 b (y-axis intercept)	-	.2 263.4	3 0.34341	343.41	0	0	70.2754224	0	#VALUE!	#VALUE!	
5 TSS/Turbidity Rat	ing Curve Equation	258.	7 2.012924	2012.924	0		419.5607946		128385.6031		
6 y = mx + b	y = 2.1682x - 10.6	06 249.	3 2.034606	2034.606	0		436.4292943		128746.6417		
7 m (slope)	2.16	82 246.	3 2.338154	2338.154	0		514.5503025		154365.0909		
8 b (y-axis intercept)	-10.6	06 241.3	2 4.506354	4506.354	0		1018.671236		308657.3842		
9 Chloride/Conductivity	/ Rating Curve Equatio	1 23	3 2.793476	2793.476	0		635.0037458		189231.1162		
10 y = mx + b		0 234	4 3.031978	3031.978	0		687.685659		209744.1262		
11 m (slope)		0 227.	7 1.774422	1774.422	0		398.1203213		117445.4947		
12 b (y-axis intercept)		0 225.0	5 3.097024	3097.024	0		692.7788732		207140.8832		
13 Average Offset Between Ser	nsor Depth and Stage	216.	2.83684	2836.84	0		630.9906617		191190.1704		
14 Offset (m)	0.1	12 212.	3.59571	3595.71	0		794.9341732		236890.384		
15 Load	Totals	213.3	3.443936	3443.936	0		763.7027954		231401.9469		
16 Sediment Load (mg)	254,447,241.	1 213.4	4 4.614764	4614.764	0		1023.726324		303022.9921		
17 Chloride Load (mg)		213.	3 3.335526	3335.526	0		746.1298149		224585.0742		
18 Sediment Load (kg)	254.4	5 212.4	4 5.156814	5156.814	0		1159.623078		351365.7923		
19 Chloride Load (kg)	-	211.0	5 4.35458	4354.58	0		984.7294802		292464.6559		
20 Sediment Load (Ib)	559.	8 210.4	3.747484	3747.484			853.7611736		258689.6354		
21 Chloride Load (Ib)	-	209.	4.658128	4658.128	0		10/9.289655		320549.0278		
22 Notes		208.:	4.137/6	4137.76	0		983.4859683		295045.7902		
23 1) All values on this page will be filled once		20	5.00504	5005.04	0		1224.223775		309715.5803		
24 every value and equation found on the Data		210.3	0.52278	0522.78	0		2500 528420		490830.1218		
25 import worksneet is appropriately med out.		107	6 175969	6175 969			1640 762614		/37003.1454		
27 2) Data under the "Load Calculations" section		197	7 6 782964	6782.964	0		1847 796061		55/1338 8177		
28 will correspond to how	many lines of data vo	179	5 7 952797	7953 793	0		2280 065025		688579 6409		
29 copied over from the logger station webpage		173.	3 10 42554	10425 54	0		3121.335782		930158 0628		
30 table which is why choo	sing a specific time	173.	2 12.788878	12788.878			3947,494375		1196090.797		
31 range is inportant, prevents oversaturation.		164.1	1 13.829614	13829.614	0		4409.800613		1309710.78		
32		157.4	4 14.848668	14848.668	0		4882,448435		1459852.083		
33 3) The main values that will be used for analysis		is 148.	3 16.084542	16084.542	0		5389.159575		1632915.35		
34 are the "Sediment Load" and "Chloride Load"		144.	5 17.298734	17298.734	0		5836.809086		1733532.3		
35 values since they calculate the amount of		142.9	22.437368	22437.368	0		7774.927204		2363577.87		
36 particles passing the sensor station when		135.	3 27.576002	27576.002	0		9790.341081		2907731.298		
37 automatic data logging occurred.		138.	5 32.736318	32736.318	0		11807.31226		3542193.682		
38		131.	5 27.597684	27597.684	0		10286.60067		3116840		
39 4) This table will only be able to read up to 1000		128.	7 26.513584	26513.584	0		10106.02903		2991384.595		
40 data entries. If including	g more than 1000, scro	125.4	4 30.04775	30047.75	0		11729.22635		3565684.811		

WATER RESEARCH CENTER

Discharge and TSS literature

- Sloto, R.A., and Olson, L.E., Estimated suspended-sediment loads and yields in the French and Brandywine Creek Basins, Chester County, Pennsylvania, water years 2008–09: U.S. Geological Survey Scientific Investigations Report 2011–5109, 31 p., <u>https://pubs.usgs.gov/sir/2011/5109/</u>
- Sloto, R.A., Gellis, A.C., and Galeone, D.G., 2012, Total nitrogen and suspended-sediment loads and identification of suspended-sediment sources in the Laurel Hill Creek watershed, Somerset County, Pennsylvania, water years 2010–11: U.S. Geological Survey Scientific Investigations Report 2012–5250, 44 p., <u>https://pubs.usgs.gov/sir/2012/5250/support/sir2012-5250.pdf</u>
- MGlysson, G & Gray, John & Schwarz, Gregory. (2001). A Comparison of Load Estimates Using Total Suspended Solids and Suspended-Sediment Concentration Data. 10.1061/40569(2001)123. https://www.researchgate.net/publication/237815051_A_Comparison_of_Load_Estimates_Using_Total_Suspended_Solids_and_Suspended-Sediment_Concentration_Data
- Gray, John R, G. Douglas Glysson, Lisa M. Turcios, and Gregory E. Schwarz. Comparability of Suspended-Sediment Concentration and Total Suspended Solids Data. U.S. GEOLOGICAL SURVEY, Water-Resources Investigations Report 00-4191, Reston, Virginia 2000. <u>https://water.usgs.gov/osw/pubs/WRIR00-4191.pdf</u>
- Lewis, Jack, Rand Eads, Randy Klein. Comparisons of Turbidity Data Collected with Different Instruments. Report on a Cooperative Agreement Between the California Department of Forestry and Fire Protection and USDA Forest Service--Pacific Southwest Research Station (PSW Agreement # 06-CO-11272133-041). <u>https://water.usgs.gov/fisp/docs/Tprobe_final_report.pdf</u>

Today

- With Lauren McGrath and Marion Waggoner in Lab
 - Demonstration of methods
 - In pairs
 - Filter samples (already prepared with known concentrations, to be dried and weighed later)
 - Weigh samples (already dried)
- With Dave Bressler and Dave Yake in Field
 - Demonstration of methods
 - In pairs
 - Discharge measurements, flow meter
 - Discharge measurements, orange float
 - Collect and label grab samples

Preparing for the rest of the day

- Get into pairs
- Half stay at Lab, half go in field
 - \circ Field
 - "Ashbridge Preserve" put this into GPS
 - Carpool as you'd like
 - Everyone bring waders
 - Everyone bring your grab bottle, data sheet, clipboard, pencil
 - Bring other supplies as needed

