# Physical Properties of Watersheds

Hydrology Fluvial Geomorphology Water Temperature



#### Watershed Influence on Stream Ecosystems





# Learning Objectives

Understand what a watershed is and how water moves from watershed hillslopes into streams and rivers

Be able to relate human and natural land use/land covers to a watershed's hydrologic response

Understand the nature and sources of sediment loads in streams

Understand how scientists measure stream water and sediment discharge

- Understand how restoration measures can address altered hydrologic and sediment regimes
- Understand effective means of monitoring watershed hydrology, sediment loads, and physical habitat quality



# Definitions

- Hydrology science that encompasses the occurrence, distribution, movement and properties of the waters of the earth and their relationship with the environment
- Fluvial processes associated with rivers and streams
- Geomorphology the study of the physical features of the surface of the earth and their relation to its geological structures
- Fluvial Geomorphology



#### **Climate Change**

#### Hillslope Processes

**Critical Zone Processes** 

Floodplain and Channel Geomorphology

**Riparian Ecology** 

Stream Ecology

Watershed Fluxes



Learning objectives:

Understand what a watershed is and how water moves from watershed hillslopes into streams and rivers

Be able to relate human and natural land use/land covers to a watershed's hydrologic response



# Watershed Hydrology

- Study of the spatial and temporal movement of water within a watershed
  - Includes delivery of water to and movement of water through a river or stream





# Hydrologic Cycle



## Movement of all of this water





# The Watershed

- Water-receiving area that drains into a stream
- All of the precipitation that falls into a watershed flows into that watershed's stream





Watershed Boundary (Drainage Divide)

• The line separating one watershed from another





## Watershed Boundaries





## The conceptual watershed

#### All land is in one watershed or another





## Stormflow





# Infiltration

- Infiltration
  - Movement of water into soil pores
- Infiltration rate
  - Amount soaking in over time

- Infiltration capacity
  - Maximum rate water infiltrates a soil
- Macropores (>75µm)
- Gravity
- Capillary action



# Infiltration and Runoff

- No Runoff if Rainfall Rate < Infiltration Rate
- If Rainfall Rate > Infiltration Rate
  - Water stands in small depressions
  - Travels down slope as Surface Runoff





WATER RESEARCH CENTER

# Infiltration Rate of a Soil

- Determined by
  - Ease of entry through soil surface
  - Storage capacity of soil
  - Transmission rate through soil



# Runoff

- If Rainfall Rate > Infiltration Rate = runoff and standing depressions
- Overland flow



Figure 2.10: Flow paths of water over a surface. The portion of precipitation that runs off or infiltrates to the ground water table depends on the soil's permeability rate; surface roughness; and the amount, duration, and intensity of precipitation.



# Subsurface Flow

• Subsurface flow mixes with baseflow and increases ground water discharge to the channel



Figure 2.10: Flow paths of water over a surface. The portion of precipitation that runs off or infiltrates to the ground water table depends on the soil's permeability rate; surface roughness; and the amount, duration, and intensity of precipitation.



# Saturated Overland Flow

- Ground water breaks out of soil and travels to stream as overland flow or *quick return flow*
- Rainfall becomes > infiltration rate, and all rainfall flows downslope as overland runoff
- Combination of direct precipitation and quick return flow is called *saturated overland flow*



Figure 2.10: Flow paths of water over a surface. The portion of precipitation that runs off or infiltrates to the ground water table depends on the soil's permeability rate; surface roughness; and the amount, duration, and intensity of precipitation.



# Primary Factors Influencing Runoff

- Land use/land cover
- Hydrologic soil groups

- Precipitation intensity
- Topography
- Antecedent watershed conditions
  - Saturated soils
  - Frozen soils/snowcover

# HSGSoil TextureASand, loamy sand or sandy loamBSilt or loamCSandy clay loamDClay loam, silt clay loam, sandy clay, silty clay, or clay

Table 1 HSG based on USDA soil classification



## Runoff Curve Numbers – developed urban lands

| Cover description                         |                                                                                                                                |            | Curve numbers for hydrologic soil group |    |    |  |  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------|----|----|--|--|
|                                           | А                                                                                                                              | В          | С                                       | D  |    |  |  |
| Open space (lawns                         | Poor condition (grass cover <50%)                                                                                              |            | 79                                      | 86 | 89 |  |  |
| parks, golf courses,                      | Fair condition (grass cover 50 to 75%)                                                                                         |            | 69                                      | 79 | 84 |  |  |
| cemeteries, etc.)                         | Good condition (grass cover >75%)                                                                                              |            | 61                                      | 74 | 80 |  |  |
| Impervious areas                          | Paved parking lots, roofs, driveways, etc. (excluding right of way)                                                            | f 98 98 98 |                                         |    | 98 |  |  |
| Streets and roads                         | Paved; curbs and storm sewers (excluding right-of-way)                                                                         | 98         | 98                                      | 98 | 98 |  |  |
|                                           | Paved; open ditches (including right-of-way)                                                                                   | 83         | 89                                      | 92 | 93 |  |  |
|                                           | Gravel (including right of way)                                                                                                | 76         | 85                                      | 89 | 91 |  |  |
|                                           | Dirt (including right-of-way)                                                                                                  | 72         | 82                                      | 87 | 89 |  |  |
| Western desert urban<br>areas             | Natural desert landscaping (pervious area only)                                                                                | 63         | 77                                      | 85 | 88 |  |  |
|                                           | Artificial desert landscaping (impervious weed barrier, desert shrub with 1- to 2-inch sand or gravel mulch and basin borders) | 96         | 96                                      | 96 | 96 |  |  |
| Urban districts                           | Commercial and business (85% imp.)                                                                                             | 89         | 92                                      | 94 | 95 |  |  |
|                                           | Industrial (72% imp.)                                                                                                          | 81         | 88                                      | 91 | 93 |  |  |
| Residential districts by average lot size | $\frac{1}{8}$ acre or less (town houses) (65% imp.)                                                                            | 77         | 85                                      | 90 | 92 |  |  |
|                                           | <sup>1</sup> / <sub>4</sub> acre (38% imp.)                                                                                    | 61         | 75                                      | 83 | 87 |  |  |
|                                           | <sup>1</sup> / <sub>3</sub> acre (30% imp.)                                                                                    | 57         | 72                                      | 81 | 86 |  |  |
|                                           | $\frac{1}{2}$ acre (25% imp.)                                                                                                  | 54         | 70                                      | 80 | 85 |  |  |
|                                           | 1 acre (20% imp.)                                                                                                              | 51         | 68                                      | 79 | 84 |  |  |
|                                           | 2 acres (12% imp.)                                                                                                             | 46         | 65                                      | 77 | 82 |  |  |

## Runoff Curve Numbers for agricultural lands

| Cover description |                               |                      | Curve numbers for hydrologic soil group |    |    |    |  |
|-------------------|-------------------------------|----------------------|-----------------------------------------|----|----|----|--|
| Cover type        | Treatment                     | Hydrologic condition | A                                       | В  | С  | D  |  |
| Fallow            | Bare soil                     |                      | 77                                      | 86 | 91 | 94 |  |
|                   | Crop<br>residue<br>cover (CR) | Poor                 | 76                                      | 85 | 90 | 93 |  |
|                   |                               | Good                 | 74                                      | 83 | 88 | 90 |  |
| Row crops         | Straight<br>row (SR)          | Poor                 | 72                                      | 81 | 88 | 91 |  |
|                   |                               | Good                 | 67                                      | 78 | 85 | 89 |  |
|                   | SR + CR                       | Poor                 | 71                                      | 80 | 87 | 90 |  |
|                   |                               | Good                 | 64                                      | 75 | 82 | 85 |  |
|                   | Contoured<br>(C)              | Poor                 | 70                                      | 79 | 84 | 88 |  |
|                   |                               | Good                 | 65                                      | 75 | 82 | 86 |  |
|                   |                               | Poor                 | 69                                      | 78 | 83 | 87 |  |
|                   | C+CR                          | Good                 | 64                                      | 74 | 81 | 85 |  |
|                   | Contourod                     | Poor                 | 66                                      | 74 | 80 | 82 |  |
|                   | & terraced<br>(C&T)           | Good                 | 62                                      | 71 | 78 | 81 |  |
|                   |                               | Poor                 | 65                                      | 73 | 79 | 81 |  |
|                   | CAI+K                         | Good                 | 61                                      | 70 | 77 | 80 |  |

## Runoff Curve Numbers for agricultural lands

| Cover description                                                                     |                      | Curve numbers for hydrologic soil group |    |    |    |  |
|---------------------------------------------------------------------------------------|----------------------|-----------------------------------------|----|----|----|--|
| Cover type                                                                            | Hydrologic condition | A                                       | В  | С  | D  |  |
| Pasture, grassland, or range—continuous forage for grazing.                           | Poor                 | 68                                      | 79 | 86 | 89 |  |
|                                                                                       | Fair                 | 49                                      | 69 | 79 | 84 |  |
|                                                                                       | Good                 | 39                                      | 61 | 74 | 80 |  |
| Meadow—continuous<br>grass, protected from<br>grazing and generally<br>mowed for hay. |                      | 30                                      | 58 | 71 | 78 |  |
| Brush—brush-weed-<br>grass mixture with brush<br>the major element.                   | Poor                 | 48                                      | 67 | 77 | 83 |  |
|                                                                                       | Fair                 | 35                                      | 56 | 70 | 77 |  |
|                                                                                       | Good                 | 30 <sup>C</sup>                         | 48 | 65 | 73 |  |
| Woods—grass<br>combination (orchard or<br>tree farm).                                 | Poor                 | 57                                      | 73 | 82 | 86 |  |
|                                                                                       | Fair                 | 43                                      | 65 | 76 | 82 |  |
|                                                                                       | Good                 | 32                                      | 58 | 72 | 79 |  |
|                                                                                       | Poor                 | 45                                      | 66 | 77 | 83 |  |
| Woods.                                                                                | Fair                 | 36                                      | 60 | 73 | 79 |  |
|                                                                                       | Good                 | 30                                      | 55 | 70 | 77 |  |
| Farmsteads—buildings,<br>lanes, driveways, and<br>surrounding lots.                   | _                    | 59                                      | 74 | 82 | 86 |  |

## Near Surface Water Movement

- Forests moderate runoff
- Interception
  - Leaf shape & texture
  - Time of year
  - Vertical and horizontal density
  - Vegetation age
- Throughfall
- Stemflow



Fig. 2.3 -- Typical pathways for forest rainfall. A portion of precipitation never reaches the ground because it is intercepted by vegetation and other surfaces. In Stream Corridor Restoration: Principles, Processes, and Practices (10/98). Interagency Stream Restoration Working Group (15 federal agencies)(FISRWG).

# **Ecological Infiltration Benefits**

- Supports stream flow during dry weather periods
- Water is cleaned of pollutants and nutrients by soil organisms and plant roots





# Stream Flow

- Perennial permanently flowing (precip or groundwater abundant)
- Ephemeral flow only during or immediately after precipitation (runoff dominated)
- Intermittent flow only during certain times of the year (typically seasonal groundwater table intersecting channel)
  - Seasonal and typically flowing >30 days/yr



# River Stage – What is it?

- Water level at some arbitrary reference point
  - Usually with zero being near streambed but also could be referenced to actual elevation above sea level
  - Historically measured with graduated staff gage - but pressure transducers now in addition



# Stream Gage





# Measurement of Discharge

- Discharge volume of water passing point in channel per unit time
- Channelized Streamflow Q = A \* v
  - Q = discharge, m<sup>3</sup>/s A = x-sectional area (m<sup>2</sup>) = Depth \* Width v = velocity (m/s)



# Rating Curves

#### Change in Cross-Sectional Flow Area as Stream Stage Changes







\* Measurement of stream stage and flow



# Rating curves



- Plot of river stage vs. discharge
- Based on crosssectional area

Example of a typical stage-discharge relation; here, the discharge of the river is 40 cubic feet per second (ft<sup>3</sup>/s) when the stage is 3.30 feet (ft). The dots on the curve represent concurrent measurement of stage and discharge.



http://water.usgs.gov/edu/streamflow3.html WAT

# Anatomy of the Hydrograph



Interagency Stream Restoration Working Group (15 federal agencies)(FISRWG).



East Branch White Clay Creek at Spencer Road



# Watershed Land Use Change





Before development, rainfall followed a more convoluted path through the landscape - held in detention storage by pit and mound topography, infiltrating into organic-rich forest soil and moving slowly to the channel. The infiltrating water fed baseflow during times when it was not raining. Flood peaks were lower and came later.

After urbanization, rainfall moves rapidly to the channel with little chance to infiltrate during storms, thus baseflow is reduced. Flowing directly off impervious surfaces such as parking lots, runoff enters streams quickly raising their level. Flood peaks now come sooner and are higher, increasing flood hazards and the tempo of geomorphic change. For example, the natural 25 yr flow becomes the much more frequent 2 year flow.



### Anthropogenic Extensions of the Stream Network



WATER RESEARCH CENTER


WATER RESEARCH CENTER

#### Stream Channel Geometry



- Cross-Sectional Area A = W \* D
- Wetted Perimeter WP = W + 2D
- Hydraulic Radius R = A/WP



## Current Velocity (V)

- Perhaps most significant characteristic affecting the biology in streams
- Mean V related to Q, D, W, and bed roughness



## Current Velocity

- Near bed velocity depends on bed roughness
- Drag from Banks and air-water interface



## Channel Velocity





#### FLUVIAL GEOMORPHOLOGY

Learning objectives:

Understand the nature and sources of sediment loads in streams

Understand how scientists measure stream water and sediment discharge



Watershed's location and condition - determines the physical, chemical (and biological) conditions of the ecosystem

- Topography (mountains, valley, ridges, slopes) determines climate, flow direction and speed
- Climate determines precipitation, temperature, and humidity
- Geology (soils, bedrock) water chemistry, water inputs to streams
- Vegetation Influences organic and water inputs, water chemistry, temperature, shading



## Longitudinal Trends

- Slope
- Bed material grain size
- Discharge
- Channel width and depth
- Mean flow velocity
- Relative volume of stored alluvium







*Figure 1.27: Three longitudinal profile zones. Channel and floodplain characteristics change as rivers travel from headwaters to mouth.* Source: Miller (1990). ©1990 Wadsworth Publishing Co.

#### Stream order





#### How Do We Study Streams?



#### Stream features



Streambed '



http://texasaquaticscience.org/wp-content/uploads/2013/07/C8\_fig\_8.1-aquatic-science-texas.jpg



# Stream system features





#### Important to evaluate landscape to local scales



## Sediment Transport

- Basic process-form link in fluvial geomorphology
- Intermediate step linking flow to form of channel
- Channel change achieved through erosion, transport and deposition of sediment



#### Flowing water carries load

- Dissolved Load
- Suspended load
- Bed Load



Dissolved Load

Suspended

Coarsest particles rolled and slid on bottom as bed load



### Suspended Load

- Wash Load
  - Very fine particles (clay, silt) that are suspended in the flow
  - Essentially independent of hydraulic conditions





## Suspended Load

- Little or no energy needed to keep fines suspended
- Rate of transport depends on...
  - stream capacity (Q)
  - supply of fines
  - Variable source area concept





#### Bedload

- Course particles that roll, bounce, or saltate along the bed of the stream
- Strongly dependent on hydraulic conditions
- Major role in channel formation and change





**Bedload on White River, OR, after Nov. 2006 floods** 



## Bed Material Load

- Bedload transport
  - At lower flows: sand transported over stable gravel armor layers
  - At higher flows: armor layer is destroyed releasing more sediment
  - Two phase flow





## Getting Bedload Moving: Entrainment

 Position of particle relative to surrounding particles





 $s_{F\&W} = 0.35$ 

Sorting



 $s_{F\&W} = 0.50$ 



 $S_{F\&W} = 1.00$ 



 $S_{F\&W} = 2.00$ 





Armor Layer

Shadowing & Imbrication

## Sediment Yield & Large Animals









#### ATV Access









#### First Order Stream Second to Fourth Order Stream Fifth to Tenth Order Stream typical flow rate average 0 particle size on stream bottom

Figure 2.15: Particle transport. A stream's total sediment load is the total of all sediment particles moving past a defined cross section over a specified time period. Transport rates vary according to the mechanism of transport.

## Sediment Discharge Relations

#### Complicated

- Sediment waves move more slowly than flood waves
- Exhaustion of sediment supply may occur
- Seasonality of variability
- Differences between rising and falling limbs of hydrographs



## Watershed Sediment Budgets

Components:

- Soil erosion
  - Rainfall detachment
  - Freeze/thaw
  - Overland flow
- Landslides
- Stream bank erosion
- Dust/deposition







## Mass Failures



## Land Use Change





#### Response to Change

 Change in sediment size, sediment quantity, discharge, or slope will result in a change in at least one of the other variables, and that aggradation and degradation depend on the proportionality of sediment supply and transport capacity.



#### Unit Stream Power

- $\omega = \gamma(QS)/w$ 
  - w = width
  - Q = discharge
  - S = slope
- Rate of potential energy expenditure over unit length of channel
- Rate of doing work



## Potential for Geomorphic Response

- High:
  - High stream power
  - High hydrologic variability
  - Course bed material
  - Low bank resistance



## Potential for Geomorphic Response

- Low:
  - Low stream power
  - Low hydrologic variability
  - Fine bed material
  - High bank resistance



## Learning Objectives

- Understand how restoration measures can address altered hydrologic and sediment regimes
- Understand effective means of monitoring watershed hydrology, sediment loads, and physical habitat quality







Concern about the contributions that **legacy sediments** may make to sediment and nutrient pollution of modern streams



Walter, R. and Merritts, D. 2008.

а

WATER RESEARCH CENTER


http://serc.carleton.edu/details/images/36342.html



post-settlement alluvium

organic buried soil

sub-soil







#### Planform

- Influences distribution of energy across and along the channel
  - Controls sediment transport rates and patterns
- Pattern controlling process:

#### Pattern $\longrightarrow$ Sinuosity $\longrightarrow$ Stream $\longrightarrow$ Sediment Load Power



#### Channel Sinuosity

Channel length/straight line valley length







## Rivers are dynamic, not static or "stable"



### Bank Erosion

- Normal, expected process
- Wet banks are more easily eroded
  - Repeated wetting and drying
  - Frost action
- Summer flows may be less effective than frequent winter flows
- Multi-peaked flows may be more effective
- Local site characteristics are important
  - Bank material composition, flow asymmetry, and channel geometry



#### Highly susceptible vertical bank



#### Grass does little to protect banks – root depths too shallow



#### Vegetation bank stabilization











Saldi-Caromile et al., 2004

#### Water temperature



#### Water Temperature

Water temperature

Water quality

#### Influence on O<sub>2</sub> Concentration



O<sub>2</sub> concentration influences:

chemical reactions, phosphate release



#### Water Temperature

Water temperature

Water quality

Nearly all organisms require DO for respiration

#### Large variation in adaptations and responses to low DO



Indices of Biological or **Biotic Integrity (IBIs)** 



#### Drivers of the temperature regime:

- Exposure
  - Lack of riparian shading
- Turbidity
  - Suspended solids which absorb and scatter light
- Reach volume to surface area
  - Shallow water is usually more dynamic: warming and cooling processes
- Groundwater
  - Cooler in summer, warmer in winter
  - Can acts as a thermal refuge



### Physical Monitoring and Metrics

Learning objective:

 Understand effective means of monitoring watershed hydrology, sediment loads, and physical habitat quality



- Fine sediment transport (suspended load)
- Cloudiness or haziness of a fluid caused by large numbers of individual particles that are generally invisible to the naked eye, similar to smoke in air



Mississippi River at its confluence with the St. Croix



 Measured by shining a light through the water and is reported in nephelometric turbidity units (NTU)









http://dx.doi.org/10.1590/2318-0331.011615099

• Affects light penetration and productivity, recreational values, and habitat quality, and cause lakes to fill in faster.



• Affects light penetration and productivity, recreational values, and habitat quality, and cause lakes to fill in faster.





- Increases sedimentation and siltation, resulting in harm to habitat areas for fish and other aquatic life
- Particles also provide attachment places for other pollutants and pathogens (e.g. metals and bacteria)



- Substrate Embeddedness
  - Smothers gravels
  - Eliminates invert and fish habitats



http://www.dep.wv.gov/WWE/get involved/sos/Pages/SOP habitat.aspx



• Pool infilling (V\* metric)



Figure 1. Representative pool in Three Creeks, a tributary to Willow Creek in Six Rivers National Forest



Lisle, T.E. 1989. http://www.fs.fed.us/psw/publications/lisle/currents06.pdf

#### Velocity/flow/depth/stage

- Many streams have USGS gages to measure stage and flow
- This information is sometimes needed on at a specific location on a stream and/or on streams without a USGS gage.
- Monitoring the velocity/stage/flow in a stream can give us information about variations in inputs to streams



#### Method Selection based on Physical Setting

- 3 factors to consider: physical setting, velocity, water depth
- Small channel flume/v-notch weir or salt dilution method
- Medium velocity profile via wading rod/current meter
- Large velocity profile from bridge or tethered profiler (ADCP)



Figure 10-2.—Equipment for making wading measurements with a current meter. Note tag line for marking stations.





Figure 10-4.—Type A crane and current-motor assembly in position on bridge.

#### Measurement of Discharge





#### Velocity Measurements

- 0.6 method (60% below surface)
- Also, need average of velocity (20-40s)

#### Measurement depth = 0.4 \* depth



See rectangular subsections



# Current meter set-up showing position of the tape and depth/velocity stations

#### Shows the 0.8 and 0.2 method



Gordon et al., 2004



#### Advantages of Continuous Data Collection

 Can adjust for seasonal impacts on sediment transport



Journal of Water Resource and Protection Vol.4 No.4(2012), Article ID:18418,7 DOI:10.4236/jwarp.2012.44020



# WATER RESEARCH CENTER

DR. MELINDA DANIELS MDANIELS@STROUDCENTER.ORG